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1 Chapter 1: Measures
Exercise 2 Show that BR is generated by each of the following:

(a) the open intervals E1 = {(a, b) : a < b},
(b) the closed intervals E2 = {[a, b] : a < b},
(c) the half-open intervals E3 = {(a, b] : a < b)} or ϵ3 = {(a, b] : a < b)},
(d) the open rays E5 = {(a,∞) : a ∈ R} or E6 = {(−∞, a) : a ∈ R},
(e) the closed rays E7 = {[a,∞) a ∈ R} or E8 = {(−∞, a] : a ∈ R}.

Proof. Recall lemma 1.1, which states if E ⊂ M(F), then M(E) ⊂ M(F). It is easy to observe Ei ⊂ BR,
therefore M(Ei) ⊂ BR.

(a) Since every open set can be written as a countable union of intervals, denote O as the set of all open
sets, then O ⊂ M(E1), BR ⊂ M(E1). Hence BR = M(E1).

(b) Attempt to show E1 ⊂ M(E2). Apparently (a, b) = ∪∞
n=1[a+ 1/n, b− 1/n].

(c) E1 ⊂ M(E3) since (a, b) = ∪∞
n=1(a, b− 1/n]. The same goes for E4.

(d) E3 ⊂ M(E5) since (a, b] = (a,∞) ∩ ((b,∞))c. The same argument goes for E6.
(e) E4 ⊂ M(E7) since [a, b) = [a,∞] ∩ ([b,∞))c.
Therefore BR = M(Ei).

Exercise 4 An algebra A is a σ-algebra iff A is closed under countable increasing unions.

Proof. If A is closed under countable increasing unions, for any countable collection of sets {Fj} in A, let
E1 = F1, E2 = E1 ∪ F2, En = En−1 ∪ Fn, then {Ej} is an increasing sequence of sets, therefore ∪∞

n=1En =
∪∞
j=1Fj ∈ A. Therefore A is a σ-algebra. The reverse is trivial.

Exercise 5 If M is the σ-algebra generated by E , then M is the union of σ-algebras generated by F as F
ranges over all countable subsets of E .

Proof. Let A be the index set of all countable subsets of E . First claim that B = ∪α∈AM(Fα) is a σ-algebra.
∀E ∈ B, E ∈ M(Fα), therefore Ec ∈ B. Given a countable collection of sets {Ej} in B, since Ej ∈ M(Fα),
Ej must be in at least one M(Fj). Let H = ∪∞

j=1Fj , consider M(H). Obviously {Ej} ∈ M(H), therefore
∪∞
j=1Ej ∈ M(H). Since H is also a countable subset of E , M(H) ⊂ B. Therefore B is indeed a σ-algebra.

It is straightforward that E ⊂ B. For the reverse, ∀E ∈ B, E is in some σ-algebra generated by Fα, therefore
E ∈ M. Thus M = B.
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Exercise 6 Suppose that (X,M,µ) is a measure space. Let N = {N ∈ M : µ(N) = 0} and M = {E ∪ F :
E ∈ M, F ⊂ N ∈ N}. Then M is a σ-algebra, and there is a unique extension µ of µ to a complete measure
on M.

Proof. Apparently M is closed under countable unions. For any E ∈ M, F ⊂ N ∈ N , without the loss of
generality assume E ∩N = ∅ (otherwise replace N,F with N\E and F\E). Then E ∪F = (E ∪N)∩ (N c∪F ),
(E ∪ F )c = (E ∪N)c ∪ (N ∩ F c)c ∈ M. Therefore M is a σ-algebra.

Now consider the extension µ. Let µ(E ∪ F ) = µ(E). This is well-defined since if E1 ∪ F1 = E2 ∪ F2 then
E1 ⊂ E2 ∪N2, µ(E1) ≤ µ(E2), and likewise µ(E1) ≥ µ(E2), thus µ(E1) = µ(E2). Then µ(∅) = µ(∅ ∪∅) = 0,
and the countable additivity can be likewise easily verified. For the uniqueness, give any other measure µ′,
µ′(E ∪ F ) ≤ µ′(E ∪N) ≤ µ(E). But µ′(E ∪ F ) ≥ µ′(E ∪∅) = µ(E), thus µ′ = µ.

Exercise 7 If µ1, . . . , µn are measures on (X,M) and a1, . . . , an ∈ [0,∞), then
∑n

1 ajµj is a measure on
(X,M).

Proof. Let µ′ =
∑n

1 ajµj . Then µ′(∅) = 0, given any collection disjoint sets {Ej} in M, µ′(∪∞
1 Ej) =∑n

1 ajµj(∪∞
1 Ej) =

∑∞
j=1

∑n
1 ajµj(Ej) =

∑∞
j=1 µ

′(Ej), therefore µ′ is also a measure.

Exercise 8 If (X,M, µ) is a measure space and {Ej}∞1 ⊂ M, then µ(lim inf Ej) ≤ lim inf µ(Ej). Also,
µ(lim supEj) ≥ lim supµ(Ej) provided that µ(∪∞

1 Ej) <∞.

Proof. Recall

lim inf Ej =

∞⋃
j=1

∞⋂
i=j

Ei, lim supEj =

∞⋂
j=1

∞⋃
i=j

Ei

observe that {Aj = ∩∞
i=jEj} gives a sequence such that A1 ⊂ A2 · · · , since µ is a measure, µ(lim inf Ej) =

µ(∪∞
j=1Aj) = limj→∞ µ(Aj) ≤ lim inf µ(Ej). For the second claim, in the same sense let {Bj = ∪∞

i=jEj}, then
µ(lim supEj) = limj→∞ µ(Bj) ≥ lim supµ(Bj).

Exercise 9 If (X,M, µ) is a measure space and E,F ∈ M, then µ(E) + µ(F ) = µ(E ∪ F ) + µ(E ∩ F ).

Proof. Since µ is a measure, µ(E)+µ(F ) = µ(E∩F )+µ(E∩F c)+µ(E∩F )+µ(Ec∩F ) = µ(E∪F )+µ(E∩F ).

Exercise 10 Given a measure space (X,M, µ) and E ∈ M, define µE(A) = µ(A ∩ E) for A ∈ M. Then µE

is also a measure.

Proof. Apparently µE(∅) = 0. Given any collection of disjoint sets {Aj} in M, µE(∪∞
j=1Aj) = µ(∪∞

j=1Aj∩E) =

µ(∪∞
j=1(Aj ∩ E)) =

∑∞
j=1 µE(Aj). Therefore µE is a measure.

Exercise 11 A finitely additive measure µ is a measure iff it is continuous from below. If µ(X) < ∞, µ is a
measure iff it is countinuous from above.

Proof. Given a finitely additive measure µ, if it is continuous from below, then given a sequence of disjoint
sets {Ej}, let {Aj = ∪j

i=1Ei}, µ(∪jEj) = µ(∪jAj) = limn→∞ µ(An), by finite additivity limn→∞ µ(An) =
limn→∞

∑n
i=1 µ(Ei) =

∑∞
n=1 µ(Ej). For the second claim, let {Bj = Ac

j}, then ∪jEj = ∪jAj = (∩j(A
c
j))

c =
(∩j(Bj))

c, therefore µ(∪jEj) + µ(∩jBj) = µ(X). By continuity from above, µ(∩jBj) = limj→∞ µ(Bj) =
µ(X)− limj→∞ µ(Aj), the rest is the same as the previous argument.

Exercise 12 Let (X,M, µ) be a finite measure space.
(a) If E,F ∈ M and µ(E4F ) = 0, then µ(E) = µ(F ).
(b) Say that E ∼ F if µ(E4F ). Then ∼ is an equivalence relation on M.
(c) For E,F ∈ M , define ρ(E,F ) = µ(E4F ). Then ρ(E,G) ≤ ρ(E,F ) + ρ(F,G), and hence ρ defines a

metric on the space M/ ∼.
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Proof. Recall E4F = (E\F ) ∪ (F\E).
(a) Since E\F and F\E are disjoint, µ(E4F ) = µ(E\F ) + µ(F\E). Since E = (E\F ) ∪ (E ∩ F ), F =

(F\E) ∪ (E ∩ F ), µ(E4F ) = µ(E) + µ(F ) − 2µ(E ∩ F ). Notice that µ(E) ≥ µ(E ∩ F ), µ(F ) ≥ µ(E ∩ F ),
therefore when µ(E4F ) = 0, µ(E) = µ(F ) = µ(E ∩ F ).

(b) Since “=” is an equivalence relation on [0,∞), “∼” is obviously also an equivalence relation.
(c) Attempt to verify µ(E4G) ≤ µ(E4F ) + µ(F4G):

µ(E4G) = µ(E\G) + µ(G\E)

= µ(E) + µ(G)− 2µ(E ∩G)
≤ µ(E) + 2µ(F ) + µ(G)− 2µ(E ∩ F )− 2µ(F ∩G)
= µ(E4F ) + µ(F4G)

where the inequality µ(F ) + µ(E ∩G) = µ(F ∩Ec ∩Gc) + µ(F ∩Gc ∩E) + µ(F ∩G ∩Ec) + 2µ(F ∩G ∩E) +
µ(E ∩G ∩ F c) ≥ µ(F ∩ E ∩Gc) + µ(F ∩G ∩ Ec) + 2µ(E ∩ F ∩G) = µ(E ∩ F ) + µ(F ∩G) is utilized.

Exercise 14 If µ is a semifinite measure and µ(E) = ∞, for any C > 0 there exists F ⊂ E with C < µ(F ) <∞.

Proof. Assume that there exists C > 0 such that ∀F ⊂ E, µ(F ) ≤ C, then sup{µ(F ) : F ⊂ E} ≤ C. Denote
the supremum with S. Then ∀n ∈ N, ∃Fn ⊂ E such that S − 1/n < µ(Fn) ≤ S. Since F ′ = ∪∞

n=1Fn ⊂ E,
µ(F ′) = S. Then consider E\F ′. Obviously µ(E\F ′) = ∞. Because µ is semifinite, there exist F ′′ such that
0 < µ(F ′′) <∞. Then µ(F ′ ∪ F ′′) > S, contradiction. Therefore there is no supremum.

Exercise 15 Given a measure µ on (X,M), define µ0 on M by µ0(E) = sup{µ(F ) : F ⊂ E andµ(F ) <∞}.
(a) µ0 is a semifinite measure. It is called the semifinite part of µ.
(b) If µ is semifinite, then µ = µ0.
(c) There is a measure ν on M (in general, not unique) which assumes only values 0 and ∞ such that

µ = µ0 + ν.

Proof. (a) First verify that µ0 is a measure. Obviously µ0(∅) = 0. Give any collection of disjoint sets {Ej}, let
E = ∪∞

j=1Ej . For a measurable set F ⊂ E and µ(F ) <∞, µ(F ) =
∑

j µ(F ∩Ej) ≤
∑

j µ0(Ej). Since this holds
for any subset of E that has finite measure, µ0(E) ≤

∑
j µ0(Ej). If µ0(E) = ∞, then the reverse trivially holds.

Otherwise µ0(E) <∞. Then for each Ej , ∀ ϵ/2j , there exists Fj ⊂ Ej such that µ0(Ej)−ϵ/2j < µ(Fj) ≤ µ0(Ej).
Then µ0(E) ≥ µ(∪∞

j=1Fj) =
∑

j µ0(Ej)− ϵ. Therefore µ0(E) =
∑

j µ0(Ej), µ0 is a measure.
Given a E such that µ0(E) = ∞, take any C > 0, then ∃F ⊂ E such that C < µ(F ) < ∞. Then

µ0(F ) = µ(F ) is non-zero and finite. Therefore µ0 is a semifinite measure.
(b) For any E ∈ M, if µ(E) < ∞, then µ(E) = µ0(E). If µ(E) = ∞, then by Exercise 14 µ0(E) = ∞.

Therefore µ = µ0.
(c) Let

ν(E) =

{
0, if E is σ-finite
∞, otherwise

ν is a measure since the disjoint union of σ-finite sets is still a σ-finite set, and if there is a set that is not σ-finite
in the collection the union will also not be σ-finite. Now verify µ(E) = µ0(E) + ν(E). When E is σ-finite, if
µ(E) is finite, then the quality holds. If µ(E) is not finite, then by previous exercise µ0(E) = ∞, the quality
still holds. If E is not σ-finite, the quality holds trivially.

Exercise 16 Let (X,M, µ) be a measure space. A set E ⊂ X is called locally measurable if for all A ∈ M
such that µ(A) < ∞, E ∩ A ∈ M. Let M̃ be the collection of all locally measurable sets. Clearly M ⊂ M̃; if
M = M̃, then µ is called saturated.

(a) If µ is σ-finite, then µ is saturated.
(b) M̃ is a σ-algebra.
(c) Define µ̃ on M̃ by µ̃ = µ(E) if E ∈ M and µ̃(E) = ∞ otherwise. Then µ̃ is a saturated measure on M̃,

called the saturation of µ.
(d) If µ is complete, so is µ.
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(e) Suppose that µ is semifinite. For E ∈ M̃, define µ(E) = sup{µ(A) : A ∈ M andA ⊂ E}. Then µ is a
saturated measure on M̃ that extends µ.

(f) Let X1, X2 be disjoint uncountable sets, X = X1∪X2, and M the σ-algebra of countable or co-countable
sets in X. Let µ0 be counting measure on P(X1) and define µ on M by µ(E) = µ0(E ∩ X1). Then µ is a
measure on M, M̃ = P(X), and in the notation of (c) and (e), µ̃ 6= µ.

Proof. (a) Since µ is σ-finite, there exists a countable collection of disjoint sets {Ej} such that X = ∪∞
j=1Ej

and µ(Ej) ≤ ∞. Therefore ∀E ∈ M̃, for each Ej , E ∩Ej ∈ M. Thus E = ∪∞
1 (E ∩Ej) ∈ M. Hence M̃ = M.

(b) ∀E ∈ M̃, ∀A ∈ M such that µ(A) < ∞, Ec ∩ A = (A ∩ (E ∩ A)c) ∈ M, therefore Ec ∈ M̃. Give any
countable collection of sets {Ej} in M̃, for any A ∈ M that has finite measure, (∪jEj)∩A = ∪j(Ej ∩A) ∈ M.
Thus M̃ is a σ-algebra.

(c) First check that µ̃ is a measure. Apparently µ̃(∅) = 0. Given any countable collection of disjoint sets
{Ej} in M̃, if Ej ∈ M for each j, then the additivity trivially holds. If ∃ i such that Ei 6∈ M, assume ∪jEj ∈ M.
Obviously ∪jEj cannot have finite measure. Therefore the equality still holds. Then check that µ̃ is saturated.
∀E, if ∀A ∈ M̃ such that µ̃(A) < ∞, A ∩ E ∈ M̃, then µ(A) < ∞, therefore µ̃(A ∩ E) < ∞, A ∩ E ∈ M,
E ∈ M̃.

(d) ∀N ∈ M̃, if µ̃(N) = 0, then because µ is complete, ∀F ⊂ N , µ̃(F ) = 0. Therefore µ̃ is also complete.
(e) First verify µ is a measure. Obviously µ(∅) = 0. Given any countable collection of disjoint sets {Ej}

in M̃, assume they are all finite. ∀Ej , ∃Aj such that Aj ∈ M, Aj ⊂ Ej , µ(Ej) − ϵ/2j < µ(Aj) ≤ µ(Ej).
Then µ(∪jEj) ≥ µ(∪jAj) >

∑
j µ(Ej) − ϵ, therefore µ(∪jEj) ≥

∑
j µ(Ej). For the reverse inequality, take

A ∈ M such that µ(∪jEj)− ϵ < µ(A) ≤ µ(∪jEj), since A ⊂ ∪jEj and µ(A) <∞, Aj = A∩Ej ∈ M, therefore
µ(∪jEj)− ϵ < µ(A) ≤

∑
j µ(Ej). Therefore the reverse inequality holds, µ(∪jEj) =

∑
j µ(Ej). For the infinite

case, since µ is semifinite, by exercise 14 both inequality hold trivially. If E ∈ M, then µ(E) = µ(E) since µ is
semifinite. Therefore µ is an extend of µ.

Now check that µ is saturated. ∀E ∈ ˜̃M, ∀A ∈ M such that µ(A) < ∞, E ∩ A ∈ M̃. Then E ∩ A =
E ∩A ∩A ∈ M.

(f) Since µ0 is a well-defined measure, it is straightforward that µ is also a measure. ∀A ⊂ X, given any B
such that B ∈ M and µ(B) <∞, since B∩X1 is finite, B must be countable. Therefore B∩A is also countable,
B ∩A ⊂ M̃. Therefore M̃ = P(X). Obviously µ̃ 6= µ, one example may be {x1} ∪X2 where x1 ∈ X1.

Exercise 17 If µ∗ is an outer measure on X and {Aj}∞1 is a sequence of disjoint µ∗-measurable sets, then
µ∗(E ∩ (∪∞

1 Aj)) =
∑∞

1 µ∗(E ∩Aj) for any E ⊂ X.

Proof. Since ∪j(E ∩ Aj) = E ∩ (∪jAj), µ∗(E ∩ (∪∞
1 Aj)) ≤

∑∞
1 µ∗(E ∩ Aj). For the reverse inequality, let

Bn = ∪n
i=1Ai. Then µ∗(E∩Bn) = µ∗(E∩An)+µ

∗(E∩Bn∩Ac
n) = µ∗(E∩An)+µ

∗(E∩Bn−1) =
∑n

i=1 µ
∗(E∩Ai).

Since µ∗(E ∩B∞) ≥ µ∗(E ∩Bn) =
∑n

1 µ
∗(E ∩Ai) for any n, µ∗(E ∩ (∪∞

1 Aj)) ≥
∑∞

1 µ∗(E ∩Aj).

Exercise 18 Let A ⊂ P(X) be an algebra, Aσ the collection of countable unions of sets in A, and Aσδ the
collection of countable intersections of sets in Aσ. Let µ0 be a premeasure on A and µ∗ the induced outer
measure.

(a) For any E ⊂ X and ϵ > 0 there exists A ∈ Aσ with E ⊂ A and µ∗(A) ≤ µ∗(E) + ϵ.
(b) If µ∗(E) <∞, then E is µ∗-measurable iff there exists B ∈ Aσδ with E ⊂ B and µ∗(B\E) = 0.
(c) If µ0 is σ-finite, the restriction µ∗(E) <∞ in (b) is superfluous.

Proof. (a) Recall the definition of the outer measure µ∗ on X:

µ∗(E) = inf{
∑
j

µ0(Aj) : Aj ∈ A, E ⊂ ∪jAj , j = 1, 2, · · · }

If µ∗(E) = ∞, the inequality holds trivially. Consider the case where µ∗(E) < ∞. Then ∀ ϵ > 0, ∃ {Aj} with
Aj ∈ A for each j and E ⊂ ∪jAj such that µ∗(∪jAj) ≤

∑
j µ

∗(Aj) ≤ µ∗(E) + ϵ. Therefore take A = ∪jAj .
(b) If E is µ∗-measurable, then by the first claim given ϵ = 1/k, k ∈ N, there exists Ak ∈ Aσ such

that E ⊂ Ak, µ∗(Ak) = µ∗(A ∩ E) + 1/k. Let B = ∩kAk. It is obvious that µ∗(B) = µ∗(E). Therefore
µ∗(E) ≤ µ∗(B ∩ E) + µ∗(B ∩ Ec) = µ∗(B), µ∗(B\E) = 0.
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For the inverse, ∀A ⊂ X, µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(A ∩ B) + µ∗(A ∩ Ec ∩ Bc) + µ∗(A ∩ Ec ∩ B) ≤
µ∗(A∩B)+µ∗(A∩Bc). ∀ ϵ > 0, ∃C ∈ Aσ such that µ∗(C) ≤ µ∗(A)+ϵ and A ⊂ C. By Caratheodory’s theorem
µ∗ is a measure on M(A), therefore µ∗(A) + ϵ ≥ µ∗(C) = µ∗(C ∩B) + µ∗(C ∩Bc) ≥ µ∗(A ∩B) + µ∗(A ∩Bc).
Therefore µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec).

(c) Notice that only need to prove the forword direction given that µ∗(E) = ∞. Since µ0 is σ-finite,
∃ {Aj} ⊂ A such that µ0(Aj) < ∞, X = ∪jAj . Let Ej = E ∩ Aj , ∀ ϵ > 0, take Bj ∈ Aσ and Ej ⊂ Bj such
that µ∗(Bj) ≤ µ∗(Ej) + ϵ/2j , then µ∗(B\E) ≤ µ∗(∪j(Bj\Ej)) ≤

∑
j µ

∗(Bj\Ej) =
∑

j(µ
∗(Bj) − µ∗(Ej)) ≤ ϵ.

Therefore µ∗(B\E) = 0.

Exercise 19 Let µ∗ be an outer measure on X induced from a finite premeasure µ0. If E ⊂ X, define the
inner measure of E to be µ∗(E) = µ0(X)− µ∗(Ec). Then E is µ∗-measurable iff µ∗(E) = µ∗(E).

Proof. If E is µ∗-measurable, then µ0(X) = µ∗(X) = µ∗(E) + µ∗(Ec), hence µ∗(E) = µ∗(E). For the inverse,
given µ∗(E) + µ∗(Ec) = µ0(X), by exercise 18, ∀n ∈ N, ∃An ∈ Aσ such that E ⊂ An, µ∗(An) ≤ µ∗(E) + 1/n.
Let A = ∩nAn, then A ∈ Aσδ with E ⊂ A. Since An is µ∗-measurable, µ∗(A ∩ Ec) ≤ µ∗(An ∩ Ec) =
µ(Ec)−µ(Ac

n∩E) ≤ µ0(X)−µ∗(E)−µ(Ac
n) ≤ µ∗(An)−µ∗(E) ≤ 1/n for any n, thus µ∗(A∩Ec) = 0, therefore

by exercise 18 E is µ∗-measurable.

Exercise 20 Let µ∗ be an outer measure on X, M∗ the σ-algebra of µ∗-measurable sets, µ = µ∗|M∗, and µ+

the outer measure induced by µ.
(a) If E ⊂ X, we have µ∗(E) ≤ µ+(E), with equality iff there exists A ∈ M∗ with E ⊂ A and µ∗(A) = µ∗(E).
(b) If µ∗ is induced from a premeasure, then µ∗ = µ+.
(c) If X = {0, 1}, there exists an outer measure µ∗ on X such that µ∗ 6= µ+.

Proof. (a) By the construction of the outer measure, if µ+(E) <∞, then ∀ ϵ > 0, ∃Ej with Ej ∈ M∗ for each
j, and E ⊂ ∪jEj such that µ∗(E) ≤

∑
j µ

∗(Ej) ≤ µ+(E) + ϵ, therefore µ∗(E) ≤ µ+(E). For the second claim,
when µ∗(E) = µ+(E), one may take Ej ∈ M∗ such that {Ej} covers E and µ∗(E) = µ+(E) =

∑
j µ

∗(Ej).
Thus just take A = ∪jEj . For the reverse, since A covers E, µ∗(E) ≤ µ+(E) ≤ µ∗(A). By µ∗(E) = µ∗(A) the
equality must be taken.

(b) Since µ∗ is induced from a premeasure, by exercise 18, for any n ∈ N, there exists An ∈ M∗ such that
E ⊂ An and µ∗(E) ≤ µ∗(An) ≤ µ∗(E) + 1/n. Let A = ∩nAn, then A ∈ M∗ with E ⊂ A and µ∗(A) = µ∗(E).
By (a) µ∗(E) = µ+(E) for any E ⊂ X.

(c) Since P(X) = {∅, {0}, {1}, {0, 1}}, and µ∗(∅) = µ+(∅) = 0, let

µ∗({0}) = a, µ∗({1}) = b, µ∗({0, 1}) = c

because of monotonicity, 0 ≤ a ≤ c, 0 ≤ b ≤ c. Then by subadditivity, a + b ≥ c. If {0} or {1} is µ∗-
measurable, then M∗ = P(X), µ = µ∗ = µ+. Therefore they must not be µ∗-measurable, a + b 6= c. Then
µ+({0}) = µ+({1}) = c, µ∗ 6= µ+.

Exercise 21 Let µ∗ be an outer measure induced from a premeasure and µ the restriction of µ∗ to the
µ∗-measurable sets. Then µ is saturated.

Proof. Give a set E ⊂ X such that ∀A that is µ∗-measurable, E ∩ A is still µ∗-measurable and µ∗(A) < ∞,
now show that E is µ∗-measurable. For any F ⊂ X that µ∗(F ) < ∞, ∃ ϵ > 0 such that A ∈ Aσ such that
F ⊂ A and

µ∗(F ) + ϵ ≥ µ∗(A) = µ∗(A ∩ (A ∩ E)) + µ∗(A ∩ (A ∩ E)c)

= µ∗(A ∩ E) + µ∗(A ∩ Ec) ≥ µ∗(F ∩ E) + µ∗(F ∩ Ec)

therefore E is µ∗-measurable.
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Exercise 22 Let (X,M, µ) be a measure space, µ∗ the outer measure induced by µ, M∗ the σ-algebra of
µ∗-measurable sets, and µ = µ∗|M∗

(a) If µ is σ-finite, then µ is the completion of µ.
(b) In general, µ is the saturation of the completion of µ.

Proof. (a) Since µ is σ-finite, if E ∈ M∗ then ∃B ∈ M such that E ⊂ B and µ∗(B\E) = 0. Therefore for any
n ∈ N, ∃An ∈ M such that B\E ⊂ An, µ∗(An) ≤ 1/n. Then let A = ∩nAn, µ(A) = 0, B\E ⊂ A. Therefore
(B\A) ⊂ E and E\(B\A) ⊂ A, E ⊂ M. Therefore M∗ = M. Obviously the measure on M is the same as the
completion of the measure.

(b) Denote the completion of (µ,M) with (µ̂,M), and the saturation of the completion (µ̃,M̃). First show
that M̃ = M∗. Give any E that is locally µ̂-measurable, for any F ⊂ X that µ∗(F ) < ∞, exists A ∈ M
such that F ⊂ A and µ∗(F ) + ϵ ≥ µ(A) = µ̂(A ∩ (A ∩ E)) + µ̂(A ∩ (A ∩ E)c) ≥ µ∗(E ∩ F ) + µ∗(Ec ∩ F ),
therefore E is µ∗-measurable. Conversely, if E is µ∗-measurable, for any A ∈ M̂ such that µ̂(A) <∞, obviously
A ∈ M∗, therefore E ∩A ∈ M∗, µ∗(E ∩A) = µ̂(E ∩A) ≤ ∞. Then by (a), E ∩A ∈ M, therefore E is locally
µ̂-measurable.

Now show that µ̃ = µ. ∀E ∈ M̃, if E is in M, then µ̃(E) = µ(E) since the extension is unique. If E is not
in M, then µ̃(E) = ∞. If µ∗(E) <∞, then E ∈ M. Therefore µ̃ = µ.

Exercise 23 Let A be the collection of finite unions of sets of the form (a, b] ∩Q where −∞ ≤ a < b ≤ ∞.
(a) A is an algebra on Q.
(b) The σ-algebra generated by A is P(Q).
(c) Define µ0 on A by µ0(∅) = 0 and µ0(A) = ∞ for A 6= ∅. Then µ0 is a premeasure on A, and there is

more than one measure on P(Q) whose restriction to A is µ0.

Proof. (a) Obviously Q and ∅ are in A, and finite unions of elements in A are still in A. Give (a, b] ∩ Q, its
completion is (−∞, a] ∪ (b,∞] ∩Q is still a finite union, therefore A is an algebra.

(b) Since for any a ∈ Q, ∩∞
n=1(a, a+ 1/n] ∩Q = {a} and Q is countable, any subset of Q may be generated

by single point sets. Therefore M(A) = P(Q).
(c) It is easy to see that µ0 is finitely additive. Two measures that agree with µ0 when restricted to A may

be given: (1) the counting measure; (2) the outer measure given by µ0. They will produce different results on
{0}.

Exercise 24 Let µ be a finite measure on (X,M), and let µ∗ be the outer measure induced by µ. Suppose
that E ⊂ X satisfies µ∗(E) = µ∗(X).

(a) If A,B ∈ M and A ∩ E = B ∩ E, then µ(A) = µ(B).
(b) Let ME = {A∩E : A ∈ M}, and define the function ν on ME defined by ν(A∩E) = µ(A). Then ME

is a σ-algebra on E and ν is a measure on ME .

Proof. (a) µ∗(X\E) = 0. Therefore µ(A) ≤ µ∗(A ∩ E) + µ∗(A ∩ Ec) = µ∗(B ∩ E) = µ(B), and the reverse
inequality is also true in the same sense. Therefore µ(A) = µ(B).

(b) Obviously ∅ and E are in ME . For any A ∈ M, the completion of A ∩ E in E is still in ME . ME is
also closed to countable unions since M is a σ-algebra. Give any countable collection of disjoint sets {Aj ∩E},
ν(∪jAj ∩ E) = µ(∪jAj). Let Bn = An\ ∪n−1

1 An, then Bj ∩ E = Aj ∩ E. Therefore µ(∪jAj) =
∑

j µ(Bj) =∑
j µ(Aj) =

∑
j ν(Aj ∩ E).

Exercise 25 If E ⊂ R, the following are equivalent:
(a) E ∈ Mmu.
(b) E = V \N1 where V is a Gδ set and µ(N1) = 0.
(c) E = H ∪N2 where H is an Fσ set an µ(N2) = 0.

Proof. Obviously (b) and (c) implies (a). Suppose E ∈ Mµ, if µ(E) < ∞, give any positive integer n,
according the previous proposition one may select an open set Un and a compact set Kn such that the error
of their measure is within 1/n. Then by taking the countable union or intersetion one may find such H and
V . If µ(E) = ∞, let Ej = E ∩ (aj , bj ]. For any ϵ > 0, for each j, one can find Uj such that Ej ⊂ Uj and
µ(Uj) ≤ µ(Ej) + 2−jϵ. Let V = ∪jUj , then µ(V \E) =

∑
j µ(Uj\Ej) ≤ ϵ. In the same sense one can find a

countable union of compact sets, H, such that µ(E\H) = 0.
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Exercise 26 If E ∈ Mµ and µ(E) < ∞, then for every ϵ > 0 there is a set A that is a finite union of open
intervals such that µ(E △ A) < ϵ.

Proof. By theorem 1.18, give any ϵ > 0 one can find a compact K and an open U such that µ(U) − ϵ ≤
µ(E) ≤ µ(K) + ϵ. Therefore one can find finite union of open intervals I = ∪jIj that K ⊂ I ⊂ U . Then
µ(E △ I) = µ(E\I) + µ(I\E) ≤ 2µ(U\K) = 2ϵ.

Exercise 27 Denote the Cantor set C. Show that if x, y ∈ C and x < y, there exists z 6∈ C such that
x < z < y.

Proof. If such z does not exist, then x, y must lie in the same interval, which implies |x− y| < 3−n for any n,
thus x = y, contradiction. Therefore x and y must not lie in the same interval. Hence ∃N such that x and y
are seperated at the n-th iteration. Thus just pick any z in the middle third of the interval then x < z < y.

Exercise 28 Let F be increasing and right continuous, and let µF be the assiciated measure. Then µF ({a}) =
F (a)− F (a−), µF ([a, b)) = F (b−)− F (a−), µF ([a, b]) = F (b)− F (a−), and µF = F (b−)− F (a).

Proof. Since {a} = ∩n[a, a+1/n), µF ({a}) = µ(∩n(a−1/n, a]) = limn→∞(F (a)−F (a−1/n)) = F (a)−F (a−).
Then µF ([a, b)) = µF ((a, b]) + µ({a})− µ({b}) = F (b−)− F (a−). The rest can be easily shown with the same
argument.

Exercise 29 Let E be a Lebesgue measurable set.
(a) If E ⊂ N where N is the nonmeasurable set (taking one element of each equivalence class in [0, 1)/{x−y ∈

Q}), then m(E) = 0.
(b) If m(E) > 0, then E contains a nonmeasurable set.

Proof. (a) Suppose R = Q∩ [0, 1). Take Er = {x+ r : x ∈ E ∩ [0, 1− r)}∪{x+ r−1 : x ∈ E ∩ [1− r, 1)}. Then
each Er is measurable and a subset of [0, 1). Therefore 1 = m([0, 1)) ≥ m(∪rEr) =

∑
rm(Er) =

∑
rm(E),

m(E) = 0. (b) Because of translation invariance it suffices to consider E ⊂ [0, 1]. Obviously E = ∪rE ∩ Nr.
Then if each E ∩ Nr is measurable, m(E) =

∑
rm(∪r(E ∩ Nr)) =

∑
rm((E ∩ N)), therefore m(E) = 0,

contradiction.

Exercise 30 If E ∈ L and m(E) > 0, for any α < 1 there is an interval I such that m(E ∩ I) > αm(I).

Proof. Suppose that there exists an α such that for every open interval I, m(E∩ I) ≤ αm(I). If E is bounded,
then there exists a collection of disjoint open intervals such that E ⊂ ∪kIk with

∑
km(Ik) ≤ (1 + ϵ)m(E) for

any ϵ > 0. Then m(E) = m(∪k(E ∩ Ik)) ≤
∑

k αm(Ik) ≤ α(1 + ϵ)(E), contradiction. If E is not bounded, by
σ-finiteness, one may write E = ∪kEk where m(Ek) < ∞ for each k. Take Ei such that m(Ei) > 0. Then for
any α < 1 there is an interval I such that m(E ∩ I) ≥ m(Ei ∩ I) > αm(I).

Exercise 31 If E ∈ L and m(E) > 0, the set E − E = {x− y : x, y ∈ E} contains an interval centered at 0.

Proof. By exercise 30, there is an interval I = (x0 − α, x0 + α) such that m(E ∩ I) > 3/4m(I). Suppose there
is a δ such that 0 ≤ δ < a and δ 6∈ E − E. Then for any pair x, y ∈ E, x − y 6= δ. Let E1 = E ∩ (x0 − a, x0],
E2 = E∩ (x0, x0+a). Then ∀x ∈ E1, x+ δ ∈ I but not in E. Therefore E1+ δ ⊂ I\E. Similarly E2− δ ⊂ I\E.
Then m(E ∩ I) ≤ m(E1) +m(E2) ≤ 2(m(I)−m(I ∩ E)) < 2/3m(E ∩ I), contradiction. Therefore δ ∈ E − E
and −δ ∈ E − E, (−α, α) ⊂ E − E.

Exercise 33 There exists a Borel set A ⊂ [0, 1] such that 0 < m(A ∩ I) < m(I) for every subinterval I of
[0, 1].

Proof. Enumerate the subintervals of I with rational endpoints. Then construct a series of cantor sets. For I1,
split it into two disjoint intervals with finite measure. Then on each subinterval contruct a Cantor set K1,K

′
1,

both with finite measure. Next assume that K1, · · · ,Kn and K ′
1, · · · ,K ′

n are already given for I1, · · · , In. Let
Ln = (K1 ∪ · · · ∪Kn)∪ (K ′

1 ∪ · · · ∪K ′
n), then Ln is compact and totally disconnected. Therefore In+1\Ln must

contain some intervals, namely Jn+1. Then split Jn+1 and construct Kn+1 and K ′
n+1 on each subinterval. Let
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K = ∪nKn and then obviously K ′
n is disjoint from K for any n. Since K is the union of some Cantor sets, it

is a borel set.
Let I be some subinterval of [0, 1]. Then there must be some In such that In ⊂ I. Therefore Kn,K

′
n ∈ I.

Then 0 < m(Kn ∩ In) ≤ m(K ∩ I) < m(K ∩ I) +m(K ′
n) ≤ m(I).

2 Chapter 2: Integration
Let the measurable space be (X,M) for Exercise 1-7.

Exercise 1 Let f : X → R and Y = f−1(R). Then f is measurable iff f−1({±∞}) ∈ M, and f is measurable
on Y .

Proof. If f is measurable then f−1({±∞}) ∈ M. Give any borel set B ∈ BR, f−1(B) ∈ M. Therefore
f−1(B ∩ R) = f−1(B) ∩ Y ∈ M, f measurable on Y . Conversely, for any borel set B ∈ BR, f−1(B) =
f−1((B ∩ R) ∪ (B ∩ {∞,−∞})) ∈ M, f measurable.

Exercise 2 Suppose f, g : X → R are measurable.
(a) fg is measurable (where 0 · (±∞) = 0).
(b) Fix a ∈ R and define h(x) = a if f(x) = −g(x) = ±∞ and h(x) = f(x) + g(x) otherwise. Then h is

measurable.

Proof. (a) It is easy to see that (fg)−1(±∞) ∈ M. Consider fg on Y = (fg)−1(R). If both f and g are finite,
then fg measurable on this domain Y1. If one of the maps is infinite and the other map is zero, denote this
domain with Y2 ∈ M. Y2 is included in the inverse image of 0. Therefore fg is measurable on Y1 ∪ Y2 = Y .
Therefore fg is measurable on R by exercise 1.

(b) Obviously (f + g)−1({±∞}) ∈ M. In the same sense consider f + g on Y . If f and g are both finite,
then f + g is measurable on this domain Y1. Otherwise these two maps produce infinity of different signs and
included in the reverse image of a. Therefore f + g is measurable on R.

Exercise 3 If {fn} is a sequence of measurable functions on X, then {x : lim fn(x) exists} is a measurable
set.

Proof. ∀x ∈ X, lim fn(x) exists if and only if g3(x) = g4(x), where g3(x) = lim sup fn(x), g4(x) = lim inf fn(x).
Since fn is measurable for each n, g3 and g4 are measurable, which implies g3− g4 is also measurable on both R
and R. Therefore {x : lim fn(x) exists} = (g3 − g4)

−1({0})∪ {g−1
3 (∞)} ∩ {g−1

4 (∞)} ∪ {g−1
3 (−∞)} ∩ {g−1

4 (−∞)}
is measurable.

Exercise 4 If f : X → R and f−1((r,∞]) ∈ M for each r ∈ Q, then f is measurable.

Proof. ∀ r ∈ R, by the definition of real numbers there is a cauthy sequence of increasing rational numbers qn
such that lim qn = r. Then f−1((r,∞]) = f−1(∩n(qn,∞]) = ∩nf

−1((qn,∞]) ∈ M, f measurable.

Exercise 5 If X = A∪B where A,B ∈ M, a function f is measurable on X iff f measurable on both A and
B.

Proof. Recall that f is measurable on A ⊂ X if f−1(B) ∩A ∈ M for any set B that is measurable. Therefore
obviously f measurable on A and B. Conversely, give any measurable set M , then f−1(M)∩A ∈ M, f−1(M)∩
B ∈ M. Then f−1(M) ∈ M.

Exercise 6 The supremum of an uncountable family of measurable R-valued functions on X can fail to be
measurable.

Solution. Consider any unmeasurable set Y (then it is uncountable), give fy = χy for any y ∈ Y . Then
supy fy = χY is not measurable since Y is not measurable.
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Exercise 7 Suppose that for each α ∈ R we are given a set Eα ∈ M such that Eα ⊂ Eβ whenever α < β,
∪α∈REα = X, and ∩α∈REα = ∅. Then there is a measurable function f : X → R such that f(x) ≤ α on Eα

and f(x) ≥ α on Ec
α for every α.

Solution. Take f(x) = inf{q ∈ Q : x ∈ Eq}. Then ∀x ∈ Eα, for any rational q that q > α, x ∈ Eq. Therefore
f(x) ≤ α. Similarly ∀x ∈ Ec

α, x ∈ Ec
q for any rational numbers q ≤ a, therefore x 6∈ Eq, x may only be in

some Eq that q > α, therefore f(x) ≥ α. Note that: (1) f is R-valued since ∀x ∈ X, x ∈ Eq for some rational
q, therefore f(x) ≤ q; if f(x) = −∞ then x ∈ ∩α∈REα contradiction. (2) f is R-measurable because ∀α ∈ R,
f−1([α,∞)) = ∪nf

−1([qn,∞)) = ∪n{x : f(x) ≥ qn} = ∪nE
c
q ∈ M where qn is some decreasing cauthy sequence

of rationals that converges to α.

Exercise 8 If f : R → R is monotone, then f is borel measurable.

Proof. Without loss of generality, suppose f is increasing, then f−1 is also monotone increasing on Imf . Thus
f−1([a,∞)) must be some interval, therefore borel measurable. Hence f is borel measurable.

Exercise 9 Let f : [0, 1] → [0, 1] be the cantor function, and let g(x) = f(x) + x.
(a) g is a bijection from [0, 1] to [0, 2], and h = g−1 is continuous from [0, 2] to [0, 1].
(b) If C is the cantor set, m(g(C)) = 1.
(c) By Exercise 1.29, g(C) contains a Lebesgue nonmeasurable set A. Let B = g−1(A). Then B is Lebesgue

measurable but not Borel measurable.

Proof. (a) Obviously g is monotone increasing and continuous, thus g([0, 1]) = [0, 2], g is bijective. Therefore
∀ (a, b) ∈ [0, 1], h−1((a, b)) = g((a, b)) = (g(a), g(b)), h is open.

(b) Recall C = [0, 1]\(∪kIk). Since g is bijective and {Ik} is pairwise disjoint, g(C) = [0, 2]\g(∪kIk) =
[0, 2]\(∪kg(Ik)). By the construction of f , f is constant on Ik. Thus m(g(Ik)) = m(Ik). Therefore

m(g(C)) = m([0, 2])−
∑
k

m(Ik) = 1

(c) Since B = g−1(A) ⊂ g−1(g(C)) = C, B must be of zero measure because it is contained in some null
sets. Since h is continuous hence borel measurable, if B is borel measurable then A = h−1(B) would be borel
measurable, contradiction.

Exercise 10 The following implications are valid iff the measure µ is complete.
(a) If f is measurable then f = g µ-a.e., then g is measurable.
(b) If fn is measurable for n ∈ N and fn → f µ-a.e., then f is measurable.

Proof. (a) If µ is complete, then g−f must be measurable since it is only non-zero on some null sets, therefore
g = g − f + f is Lebesgue measurable. Conversely, suppose any N ⊂ E with E a null set. Then let f = χE ,
g = χE\N . Then f − g = χN must be measurable. Therefore N = (f − g)−1({1}) is measurable.

(b) Since fn is measurable for each n, lim fn is measurable, and lim fn = f µ-a.e.. If µ is complete, by (a)
f is measurable. Conversely, suppose any subset N of a null set, take fn = 0 for each n and f = χN , then f is
measurable, N must be measurable.

Exercise 11 Suppose that f is a function on R × Rk such that f(x, ·) is borel measurable for each x ∈ R
and f(·, y) is continuous for each y ∈ Rk. For n ∈ N, define fn as follows. For i ∈ Z let ai = i/n, and for
ai ≤ x ≤ ai+1 let

fn(x, y) =
f(ai+1, y)(x− ai)− f(ai, y)(x− ai+1)

ai+1 − ai

Then fn is borel measurable on R×Rk and fn → f pointwise; hence f is borel measurable on R×Rk. Conclude
by induction that every function on Rn that is continuous in each variable separately is Borel measurable.
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Proof. Since f(x, ·) : Rk → R and x−ai : R → R is measurable, fn(x, y) is measurable. Now show that fn → f
pointwise. Since

|f − fn| = |f(x, y)− 1

ai+1 − ai
f(ai+1, y)(x− ai)− f(ai, y)(x− ai+1)|

=
1

ai+1 − ai
|(f(x, y)− f(ai+1, y))(x− ai)− (f(ai, y)− f(x, y))(x− ai+1)|

Suppose some ϵ > 0, then there is a open neighbourhood Bδ(x) such that ∀x′ ∈ Bδ(x), |f(x)−f(x0)| < ϵ. Take
n large enough such that [ai, ai+1] is in that neighbourhood, then

|f − fn| ≤
ϵ

ai+1 − ai
|(ai+1 − ai)| = ϵ

Since fn → f , f is borel measurable on R× Rk. If f(x) : R → R is continuous, then it is measurable. Assume
that if f : Rn → R is continuous with respect to each variable then it is measurable. Then suppose any function
g : R× Rn → R. By previous exercise g is measurable. Therefore the proof is done by induction.

Exercise 13 Suppose {fn} ⊂ L+, fn → f pointwise, and
∫
f = lim

∫
fn < ∞. Then

∫
E
f = lim

∫
E
fn forall

E ∈ M. However, this need not be true if
∫
f = lim

∫
fn = ∞.

Proof. By Fatou’s lemma,∫
E

f =

∫
fχE =

∫
lim inf fnχE ≤ lim inf

∫
fnχE = lim inf

∫
E

fn

Conversely, write∫
f −

∫
E

f =

∫
Ec

f ≤ lim inf

∫
Ec

fn = lim inf(

∫
f −

∫
E

f) =

∫
f − lim sup

∫
E

f

therefore lim sup
∫
E
fn ≤

∫
E
f ≤ lim inf

∫
E
fn, lim

∫
E
fn =

∫
E
f , the proof is done. For counter-examples, just

take fn = χ[n,n+1] + χ(−∞,0] and E = [0,∞).

Exercise 14 If f ∈ L+, let λ(E) =
∫
E
fdµ for E ∈ M. Then λ is a measure on M, and for any g ∈ L+,∫

gdλ =
∫
fgdµ.

Proof. λ(∅) = 0. Suppose a collection of disjoint measurable sets {En}, then λ(∪nEn) =
∫
fχ∪nEn

dµ =∑
n

∫
fχEn

dµ =
∑

n λ(En), therefore λ is a measure.
Give ϕ =

∑
i aiχEi

a simple function. Then
∫
ϕdλ =

∑
i aiλ(Ei) =

∫
f
∑

i aiχEi
dµ =

∫
fϕdµ. Now suppose

{ϕn} an increasing collection of simple functions that ϕn → g. Then∫
gdλ = lim

∫
ϕndλ = lim

∫
fϕndµ =

∫
fgdµ

Exercise 15 If {fn} ⊂ L+, fn decreases pointwise to f , and
∫
f1 <∞, then

∫
f = lim

∫
fn.

Proof. Obviously {f1 − fn} increases pointwise to {f1 − f}. Therefore by MCT,

lim

∫
(f1 − fn) =

∫
(f1 − f)

hence ∫
f =

∫
f1 −

∫
(f1 − f) =

∫
f1 − lim

∫
(f1 − fn) = lim fn

where the last equality is because
∫
(f1 − fn) +

∫
fn =

∫
f1.
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Exercise 16 If f ∈ L+ and
∫
f < ∞, for every ϵ > 0 there exists E ∈ M such that µ(E) < ∞ and∫

E
f >

∫
f − ϵ.

Proof. By the definition of integration, for every ϵ > 0, there exists a simple function ϕ that
∫
ϕ >

∫
f − ϵ.

Write ϕ =
∑

i aiχEi
with the standard representation (where ai 6= 0 for each i). Let E = ∪iEi, then

∫
E
f >∫

ϕ >
∫
f − ϵ. Now show that E is of finite measure. It is obvious that

∞ >

∫
ϕ ≥

∫
min{ai}χE = min{ai}µ(E)

therefore µ(E) <∞.

Exercise 17 Assume Fatou’s Lemma and deduce the monotone convergence theorem.

Proof. Suppose {fn} is a sequence in L+ such that fj ≤ fj+1 for all j, and f = limn→∞ fn = lim inf fn, then
by Fatou’s lemma, ∫

f =

∫
lim inf fn ≤ lim inf

∫
fn

Conversely,

0 =

∫
lim inf(f − fn) ≤ lim inf

∫
(f − fn) = lim inf(

∫
f −

∫
fn) =

∫
f − lim sup

∫
fn

where
∫
(f − fn) =

∫
f −

∫
fn because of

∫
(f − fn + fn) =

∫
fn +

∫
(f − fn) =

∫
f . Thus

∫
f = lim

∫
fn.

Exercise 18 Fatou’s lemma remains valid if the hypothesis that fn ∈ L+ is replaced by the hypothesis that
fn is measurable and fn ≥ −g where g ∈ L+ ∩ L1.

Proof. Obviously gn = fn + g ≥ 0. Then {gn} is a sequence in L+. Therefore by Fatou’s lemma,∫
lim inf gn =

∫
lim inf fn +

∫
g ≤ lim inf

∫
fn +

∫
g

therefore
∫
lim inf fn ≤ lim inf

∫
fn.

Exercise 19 Suppose {fn} ⊂ L1(µ) and fn → f uniformly.
(a) If µ(X) <∞, then f ∈ L1(µ) and

∫
fn →

∫
f .

(b) If µ(X) = ∞, the conclusions of (a) can fail.

Proof. (a) Since fn → f uniformly, ∃N such that ∀n ≥ N and ∀x ∈ X, |f(x) − fn(x)| ≤ 1. Let g(x) =
|fN (x)|+ 1, then fn ≤ g for each n. Since∫

g =

∫
|fN (x)|+ 1 =

∫
fN (x) + µ(X) <∞

by DCT f ∈ L1(µ) and
∫
fn →

∫
f .

(b) Just take fn = (1/n)χ[0,n)

Exercise 20 If fn, gn, f, g ∈ L1, fn → f and gn → g a.e., |fn| ≤ gn, and
∫
gn →

∫
g, then

∫
fn →

∫
f .

Proof. By taking real and imaginary parts, assume fn and gn are real. Then fn + gn ≥ 0 and gn − fn ≥ 0. By
Fatou’s Lemma, ∫

(f + g) ≤
∫

lim inf(fn + gn) ≤ lim inf

∫
(fn + gn) = lim inf

∫
fn +

∫
g

∫
(g − f) ≤

∫
lim inf(gn − fn) ≤ lim inf

∫
(gn − fn) =

∫
g − lim sup

∫
fn

thus
∫
fn →

∫
f .
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Exercise 21 Suppose fn, f ∈ L1 and fn → f a.e. Then
∫
|f − fn| → 0 iff

∫
|fn| →

∫
|f |.

Proof. Obviously ∣∣∣∣∫ |f | −
∫

|fn|
∣∣∣∣ = ∣∣∣∣∫ |f | − |fn|

∣∣∣∣ ≤ ∫ |f − fn| → 0

Conversely, if
∫
|fn| →

∫
|f |, then by Exercise 20,

∫
fn →

∫
f . Thus |

∫
f −

∫
fn| =

∫
|f − fn| → 0.

Exercise 22 Let µ be a counting measure on N. Interpret Fatou’s lemma and the monotone and dominated
convergence theorem as statements about infinite series.

Solution. Obviously the measure of a measurable function f on (N, µ) is
∫
f =

∑
n f(n) =

∑
n an. Therefore

by Fatou’s lemma, suppose {ank} a sequence of nonnegative numbers, then
∑

k lim infn ank ≤ lim infn
∑

k ank.
By MCT, given a sequence of nonnegative numbers {ank}, if ank ≤ an+1,k for every n and k, and ank → ak for
every k, then limn

∑
k ank =

∑
k ak. The DCT says that for any sequence of complex numbers {ank} such that

|ank| ≤ |gk| for each k, and ank → ak for every k, then limn

∑
k ank =

∑
k ak.

Exercise 25 Let f(x) = x−1/2 if 0 < x < 1, f(x) = 0 otherwise. Let {rn}∞1 be an enumeration of the
rationals, and set g(x) =

∑∞
1 2−nf(x− rn).

(a) g ∈ L1(m), and in particular g <∞ a.e.
(b) g is discontinuous at every point and unbounded on every interval, and it remains so after any modification

on a Lebesgue null set.
(c) g2 <∞ a.e., but g2 not integrable on any interval.

Proof. (a) Observe ∫
|g| =

∫ ∞∑
1

f(x− rn)

2n
=

∞∑
1

1

2n

∫
f(x− rn) =

∞∑
1

1

2n−1
<∞

where by MCT,∫
f(x− rn) = lim

t→∞

∫
f(x− rn)χ(rn+1/t,rn+1) = lim

t→∞

∫ rn+1/t

rn

(x− rn)
1/2dx = 2

therefore g ∈ L1(m), and obviously g <∞ a.e.
(b) Suppose x0 ∈ R with g continuous at x0. Then obviously g(x0) < ∞. For any ϵ > 0 and 0 < δ < 1,

there exists rn ∈ Q such that x0 < rn < x0 + δ. Let x′ ∈ (rn, x0 + δ) such that

g(x0) + ϵ <
1

2n
f(x′ − rn)

then g(x′) ≥ 1

2n
f(x′ − rn) ≥ g(x0) + ϵ. Since δ is arbitrary, contradiction. For any interval (a, b) ⊂ R, take

rn ∈ (a, b). Then for any ϵ that is sufficiently large, g(rn + (
1

2n
ϵ)2) ≥ ϵ. Therefore g(x) is unbounded on any

interval. If after modification g is no longer unbounded on some interval, take this interval as the same interval
(a, b). then ∃ ϵ > 0 such that g(x − rn) < ϵ for all x ∈ (a, b), then g is modified on at least (rn, rn + (

1

2n
ϵ)2)

which has a non-zero measure, contradiction.
(c) By (a) it immediately follows that g2 <∞ a.e. For the second part, observe∫

g2 ≥
∫ ∞∑

1

f2(x− rn)

4n
=

∞∑
1

1

4n

∫
f2(x− rn) = ∞

where
∫
f2(x− rn) = ∞ follows the same argument as (a).
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Exercise 32 Suppose µ(X) <∞. If f and g are complex valued measurable functions on X, define

ρ(f, g) =

∫
|f − g|

1 + |f − g|

Then ρ is a metric on the space of measurable functions if we identify functions that are equal a.e., and fn → f
w.r.t. this metric iff fn → f in measure.

Proof. The triangle inequality is obvious since

|f − g|
1 + |f − g|

= 1− 1

1 + |f − g|

is an increasing function of |f − g|. Suppose ϵ > 0. If fn → f in measure then for any η > 0, ∃N such that
∀n ≥ N ,

µ(En = {x : |fn(x)− f(x)| > ϵ}) < η

take η = ϵ, then

ρ(fn, f) =

∫
En

|fn − f |
1 + |fn − f |

+

∫
Ec

n

|fn − f |
1 + |fn − f |

≤ µ(En) + µ(X)ϵ = ϵ(1 + µ(X)) → 0

Conversely suppose ρ(fn, f) → 0. Then ∀ η > 0, ∃N such that if n ≥ N , ρ(fn, f) < η. Consequently,

ϵ

1 + ϵ
µ(En) ≤

∫
En

|fn − f |
1 + |fn − f |

≤ η

therefore ∀ t > 0, take η =
ϵt

1 + ϵ
, then ∃N such that µ(En) ≤ η

1 + ϵ

ϵ
= t.

Exercise 33 If fn ≥ 0 and fn → f in measure, then
∫
f ≤ lim inf

∫
fn.

Proof. Recall that given a sequence of real numbers {an}, there exist a subsequence {ank
} such that ank

→ L
for any lim inf an ≤ L ≤ lim sup an. Then there is a subsequence

∫
fnk

such that lim
∫
fnk

= lim inf
∫
fn.

Obviously fnk
→ f in measure, therefore there is a subsequence fnki

that converges to f a.e. Therefore by
Fatou’s Lemma, ∫

f =

∫
lim inf

i
fnki

≤ lim inf
i

∫
fnki

= lim
k

∫
fnk

= lim inf

∫
fn

Exercise 34 Suppose |fn| ≤ g ∈ L1 and fn → f in measure,
(1)

∫
f = lim

∫
fn,

(2) fn → f in L1.

Proof. (a) Since fn → f in measure iff Re(fn) → f in measure and Im(fn) → f in measure, assume fn and f
are real-valued. Since fn ∈ L1 and there is a subsequence of fn that converges to f a.e., f ∈ L1. Since g + fn
and g − fn are non-negative functions, the previous exercise implies that∫

g +

∫
f =

∫
lim inf(g + fn) ≤ lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn∫

g −
∫
f =

∫
lim inf(g − fn) ≤ lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn

therefore
∫
f = lim

∫
fn.

(b) Obviously |fn−f | converges to 0 in measure. Since |fn−f | ≤ |fn|+|f | ≤ 2|g| ∈ L1, by (a), lim
∫
|fn−f | =

0, fn → f in L1.
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Exercise 35 fn → f in measure iff for every ϵ > 0 there exist N ∈ N such that µ({x : |fn(x)−f(x)| ≥ ϵ}) ≤ ϵ
for n ≥ N .

Proof. For any ϵ, η > 0, suppose η < ϵ, then ∃N such that ∀n ≥ N , µ({x : |fn(x) − f(x)| > ϵ}) ≤ µ({x :
|fn(x)− f(x)| > η}) < η. The reverse direction is trivial.

Exercise 36 If µ(En) < ∞ for n ∈ N and χEn
→ f ∈ L1, then f is a.e. equal to the characteristic function

of a measurable set.

Proof. Since χEn
→ f in L1, there exists a subsequence χEnk

→ f a.e. Therefore there is a measurable
function g such that g = f a.e. Since f and g can only take values 0 or 1, f = χg−1{1} a.e.

Exercise 37 Suppose that fn and f are measurable compelx-valued functions and ϕ : C → C.
(a) If ϕ is continuous and fn → f a.e., then ϕ ◦ fn → ϕ ◦ f a.e.
(b) If ϕ is uniformly continuous and fn → f uniformly, almost uniformly, or in measure, then ϕ◦fn → ϕ◦f ,

uniformly, almost uniformly, or in measure, respectively.
(c) There are counterexamples when the continuity assumptions on ϕ are not satisfied.

Proof. (a) Let x ∈ X be a point where fn converges to f . Then

lim
n→∞

ϕ(fn(x)) = ϕ( lim
n→∞

fn(x)) = ϕ(f(x))

so ϕ ◦ fn → ϕ ◦ f a.e.
(b) Suppose fn → f uniformly, ∀ ϵ > 0, ∃N such that |fn − f | < ϵ for n ≥ N . Since ϕ is also uniformly

continuous, ∀ ϵ > 0, ∃δ > 0 such that |ϕ(fn)−ϕ(f)| < ϵ for any |fn−f | < δ. Therefore ϕ◦fn → ϕ◦f uniformly.
The same argument applys for the almost uniform case. If fn → f in measure, since ϕ is uniformly continuous,
∃ η,

{x : |ϕ(fn(x))− ϕ(f(x))| < ϵ} ⊂ {x : |fn(x)− f(x)| < η}

the proof is done since µ({x : |fn(x)− f(x)| < η}) → 0
(c) Give fn = e−n, fn → f uniformly, suppose ϕ = lnx, then ϕ ◦ fn = −n, which is anywhere divergent.

Exercise 38 Suppose fn → f in measure and gn → g in measure.
(a) fn + gn → f + g in measure.
(b) fngn → fg in measure if µ(X) <∞, but not necessarily if µ(X) = ∞.

Proof. (a) Let ϵ > 0, then ∃Nf , Ng such that µ({x : |fn − f | ≥ ϵ/2}) < ϵ/2 for n > Nf and likewise for g.
When n is large enough, since |(fn + gn)− (f + g)| ≤ |fn − f |+ |gn − g|,

{x : |(fn + gn)− (f + g)| ≥ ϵ} ⊂ {x : |fn − f | ≥ ϵ/2} ∪ {x : |gn − g| ≥ ϵ/2}

therefore µ({x : |(fn + gn)− (f + g)| ≥ ϵ}) → 0.
(b) Likewise define ϵ,Nf , Ng. Since |fngn − fg| ≤ |fn − f ||gn − g|+ |f ||gn − g|+ |g||fn − f |,

{x : |fg − fngn| > ϵ} ⊂ {x : |fn − f ||gn − g| > ϵ/3} ∪ {x : |fn − f ||g| > ϵ/3} ∪ {x : |f ||gn − g| > ϵ/3}

It is obvious that µ({x : |fn − f ||gn − g| > ϵ/3}) → 0. To show µ({x : |f ||gn − g| > ϵ/3}) → 0, claim that for
any η > 0, ∃N ∈ N such that µ({x : |f | > N}) < η. Let En = {x : |f | > n}, then En is a decreasing sequence
of sets. Since µ(X) <∞, and |f | can only take on finite values which implies ∩nEn = ∅, by convergence from
below, µ(En) → 0, which verifies the claim. Since

{x : |f ||gn − g| > ϵ/3} ⊂ {x : |f | > N} ∪ {x : |gn − g| < ϵ/3N}

for each N , there is

µ({x : |fn − f ||gn − g| > ϵ/3}) ≤ µ({x : |f | > N}) + µ({x : |gn − g| > ϵ/3N})

therefore ∀ ν > 0, take N and n such that µ({x : |f | > N}) < ν/2 and µ({x : |gn − g| > ϵ/3N} < ν/2, it can
be seen that µ({x : |f ||gn − g| > ϵ/3}) → 0, similarly µ({x : |g||fn − f | > ϵ/3}) → 0, the proof is done.
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Exercise 39 If fn → f almost uniformly, then fn → f a.e. and in measure.

Proof. Since fn → f almost uniformly, ∀n ∈ N, ∃En ⊂ X such that µ(En) < 1/n and fn → f uniformly
on Ec

n. Then obviously E = ∩nEn has zero measure by continuity from below, and fn → f on Ec. Therefore
fn → f a.e.

∀ ϵ > 0, take E ⊂ X such that fn → f uniformly on Ec and µ(E) < ϵ. Then ∀ η > 0, ∃N such that if n > N

{x : |fn − f | > η} ⊂ E

therefore fn → f in measure.

Exercise 40 In Egoroff’s theorem, the hypothesis “µ(X) <∞” can be replaced by “|fn| ≤ g for all n, where
g ∈ L1(µ)”.

Proof. Without loss of generality, assume fn → f for all x ∈ X. For k, n ∈ N, let

En(k) =

∞⋃
m=n

{x : |fm − f | ≥ k−1}

then for fixed k, En is a decreasing sequence. For x ∈ X, if x ∈ E1(k), then ∃m such that |fm − f | ≥ 1/k.
Therefore 1/k ≤ |fm + f | ≤ 2g,

∫
1/2kχE1(k) = 1/2kµ(E1(k)) ≤

∫
g. Since g ∈ L1, µ(E1(k)) < ∞. Therefore

by continuity from below, µ(En(k)) → 0. Given ϵ > 0 and k ∈ N, choose nk so large that µ(Enk
(k)) ≤ ϵ2−k,

and let E = ∪kEnk
(k). Then µ(E) ≤ ϵ, and |fn − f | ≤ 1/k for n > nk and x ∈ Ec.

Exercise 41 If µ is σ-finite and fn → f a.e., there exist measurable E1, E2, · · · ⊂ X such that µ((∪∞
1 Ej)

c) = 0
and fn → f uniformly on each Ej .

Proof. Suppose µ(X) < ∞, then by Egoroff’s theorem, for each k ∈ N, ∃Ek such that µ(Ec
k) < 1/k and

fn → f uniformly on Ek. Let Fn = ∪n
1Ek, then F c

n is a decreasing sequence, therefore

µ

((∞⋃
1

Ej

)c)
= µ

((∞⋃
1

Fj

)c)
= µ

(∞⋂
1

Fj

)
= 0

and fn → f uniformly on each Ej .
Since µ is σ-finite, X = X1 ∪X2 · · · each with finite measure. Therefore for each i, there exists {Ei

k} such
that µ(Xi\(∪kE

i
k)) = 0 and fn → f uniformly on each Ei

k. Since

µ

⋃
i,k

Ei
k

c ≤ µ

(⋃
i

(
Xi\

⋃
k

Ei
k

))
= 0

{Ei
k} gives the desired sequence.

Exercise 42 Let µ be the counting measure on N. Then fn → f in measure iff fn → f uniformly.

Proof. Suppose fn → f in measure. Then ∀ ϵ > 0, ∃N ∈ N such that if n > N ,

µ({x : |fn − f | > ϵ}) < 1/2

therefore |fn − f | < ϵ for each x ∈ N, hence fn → f uniformly. Conversely, if ∀ ϵ > 0, ∃N ∈ N such that if
n > N , |fn − f | < ϵ for each x ∈ N, then µ({x : |fn − f | > ϵ}) = 0.
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Exercise 44 If f : [a, b] → C is Lebesgue measurable and ϵ > 0, there is a compact set E ⊂ [a, b] such that
µ(Ec) < ϵ and f |E is continuous.

Proof. For each n ∈ N, let En = f−1(Bn(0)). Then
limµ(En) = µ(∪nEn) = µ([a, b])

therefore ∃m ∈ N such that µ([a, b]) − µ(Em) ≤ ϵ/3. Then |fχEm
| ≤ mχ[a,b], thus g ∈ L1. Hence by

theorem 2.26 there is a sequence of continuous functions gj → fχEm
. By corollary 2.32, there is a subsequence

gji → fχEm
a.e. By Egoroff’s theorem, there exists F ⊂ Em such that gji → fχEm

uniformly on Em\F and
µ(F ) < ϵ/3. By theorem 1.18, there exists a compact set E such that E ⊂ Em\F and µ(E) > µ(Em\F ) + ϵ/3.
Therefore fχE is continuous, and

µ(Ec) = µ(Ec
m) + µ(Em\E) ≤ ϵ/3 + µ(Em\F ) + µ(Em\F\E) ≤ ϵ

Exercise 45 If (Xj ,Mj) is a measurable space for j = 1, 2, 3, then
⊗3

1 Mj = (M1 ⊗M2)⊗M3. Moreover,
if µj is a σ-finite measure on (Xj ,Mj), then µ1 × µ2 × µ3 = (µ1 × µ2)× µ3

Proof. (M1 ⊗M2)⊗M3 is generated by E = {(E1 ×E2)×E3 : Ej ∈ Mj}. By the natural identification, one
takes (X1 ×X2)×X3 = X1 ×X2 ×X3. Thus E = {E1 × E2 × E3 : Ej ∈ Mj}, which generates

⊗3
1 Mj .

Suppose µ1, µ2, µ3 are σ-finite. Then on the algebra A of rectangles,
(µ1 × µ2)× µ3((E1 × E2)× E3) = µ1(E1)µ2(E2)µ3(E3) = µ1 × µ2 × µ3(E1 × E2 × E3)

since (µ1 × µ2) × µ3 and µ1 × µ2 × µ3 are both σ-finite measures and they agree on A, they are equal by the
uniqueness assertion in theorem 1.14.

Exercise 46 Let X = Y = [0, 1], M = N = B[0,1], µ is the Lebesgue measure, and ν is the counting measure.
If D = {(x, x) : x ∈ [0, 1]} is the diagonal in X × Y , then

∫ ∫
χDdµdν,

∫ ∫
χDdνdµ, and

∫
χDd(µ × ν) are all

unequal.

Proof. Obviously, ∫ ∫
χDdµdν =

∫ [∫
χy
Ddµ

]
dν = 0∫ ∫

χDdνdµ =

∫ [∫
χx
Ddν

]
dµ =

∫
dµ = 1

By definition,∫
χDd(µ× ν) = inf{

∞∑
n=1

µ(Aj)ν(Bj) : D ⊂ ∪j(Aj ×Bj)where Aj ×Bj are disjoint rectangles}

Suppose such sequence Aj ×Bj that covers D. Then [0, 1] ⊂ ∪j(Aj ∩Bj). Therefore µ(An ∩Bn) > 0 for some
n. Then µ(An) > 0, and ν(Bn) = ∞. Therefore the integral is ∞.

Exercise 48 Let X = Y = N, M = N = P(N), µ and ν are the counting measure. Define f(m,n) = 1 if
m = n and f(m,n) = −1 if m = n + 1, and f(m,n) = 0 otherwise. Then

∫
|f |d(µ × ν) = ∞, and

∫ ∫
fdµdν

and
∫ ∫

fdνdµ exist and are unequal.

Proof. ∫ [∫
fydµ

]
dν =

∞∑
n=0

∞∑
j=0

f(n, j) = 0

∫ [∫
fxdν

]
dµ =

∞∑
j=0

∞∑
n=0

f(n, j) = 1

Let E1 = {(n, n) : n ∈ N} and E2 = {(n, n+ 1) : n ∈ N}, then |f(x)| = 1 and non-zero iff x ∈ E1 ∪ E2. Thus∫
|f |d(µ× ν) = (µ× ν)(E1) + (µ× ν)(E2) = ∞

since E1 and E2 are not finite.
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Exercise 49 Prove Theorem 2.39 by using Theorem 2.37 and Proposition 2.12 together with the following
lemmas.

(a) If E ∈ M⊗N and µ× ν(E) = 0, then ν(Ex) = µ(Ey) = 0 for a.e. x and y.
(b) If f is L-measurable and f = 0 λ-a.e., then fx and fy are integrable for a.e. x and y, and

∫
fxdν =∫

fydµ = 0 for a.e. x and y.

Proof. (a) Since µ and ν are σ-finite,

0 = (µ× ν)(E) =

∫
µ(Ey)dν(y) =

∫
ν(Ex)dµ(x)

therefore ν(Ex) = µ(Ey) = 0 a.e. x and y.
(b) Let E ⊂ X × Y be the null set such that f(x, y) = 0 for all (x, y) 6∈ E. Since λ is the completion of

µ× ν, there is a set E′ ∈ M⊗N such that E ⊂ E′ and (µ× ν)(E′) = 0. Therefore

0 = (µ× ν)(E′) =

∫
µ(E′y)dν(y) =

∫
ν(E′

x)dµ(x)

thus ν(E′
x) = 0 and µ(E′y) = 0 a.e. Since µ and ν are complete, µ(Ex) = 0 and ν(Ey) = 0 a.e. Therefore

fx = 0 and fy = 0 a.e. Hence fx and fy are measurable and integrable a.e. with
∫
fxdν =

∫
fydµ = 0.

Now assume f is L-measurable. There exists an (M⊗N)-measurable function g such that f = g λ-a.e. If
f ≥ 0, then g ≥ 0 a.e. Without the loss of generality assume g ≥ 0, by Tonelli’s theorem, x 7→

∫
gxdν and

y 7→
∫
gydµ are non-negative and (M ⊗N)-measurable with∫

gdλ =

∫ ∫
g(x, y)dµ(x)dν(y) =

∫ ∫
g(x, y)dν(y)dµ(x) (∗)

Since g = f λ-a.e., if f ∈ L1(λ) then g ∈ L1(µ × ν). By Fubini’s theorem, this implies that gx ∈ L1(ν),
gy ∈ L1(µ), x 7→

∫
gxdν ∈ L1(µ) and y 7→ gyd(µ) ∈ L1(ν) a.e. x and y, and (∗) holds.

Apply (b) to f − g, therefore fx ∈ L1(ν) and fy ∈ L1(µ) a.e. x and y provided that f ∈ L1(λ). In either
cases,

∫
gxdν =

∫
fxdν a.e. x, therefore

∫
fxdν is measurable and the same holds for y. Because f = g a.e.,∫

fdλ =

∫
gdλ

=

∫ ∫
g(x, y)dµ(x)dν(y) =

∫ ∫
g(x, y)dν(y)dµ(x)

=

∫ ∫
f(x, y)dµ(x)dν(y) =

∫ ∫
f(x, y)dν(y)dµ(x)

Exercise 50 Suppose (X,M, µ) is a σ-finite measure space and f ∈ L+(X). Let

Gf = {(x, y) ∈ X × [0,∞] : y ≤ f(x)}

then Gf is M×BR-measurable and µ×m(Gf ) =
∫
fdµ; the same is also true if the inequality y ≤ f(x) in the

definition of Gf is replaced by y < f(x).

Proof. Since g = (x, y) 7→ (f(x)−y) = ((s, t) 7→ (s− t))◦ ((x, y) 7→ (f(x), y)), Gf = g−1([0,∞)) is measurable.
Then

(µ×m)(Gf ) =

∫
m((Gf )x)dµ(x) =

∫
fdµ
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Exercise 51 Let (X,M, µ) and (Y,N , ν) be arbitrary measure spaces.
(a) If f : X → C is M-measurable, g : Y → C is N -measurable, and h(x, y) = f(x)g(y), then h is

M⊗N -measurable.
(b) If f ∈ L1(µ) and g ∈ L1(ν), then h ∈ L1(µ× ν) and

∫
hd(µ× ν) = (

∫
fdµ)(

∫
gdν)

Proof. (a) Since f(x) and g(y) are M⊗N -measurable, h = fg is also measurable.
(b) Suppose f ≥ 0 and g ≥ 0. Then there exist increasing sequences ϕn and ψn of non-negative simple

functions that converges to f and g respectively. Then ϕnψn → h pointwise. Suppose ϕn =
∑k

i aiχAi
,

ψn =
∑l

j bjχBj
. Then

∫
ϕnψn =

k∑
i

l∑
j

aibj(µ× ν)(Ai ×Bj) =

(
k∑
i

aiµ(Ai)

) l∑
j

bjν(Bj)

 =

∫
ϕn ·

∫
ψn

therefore it is true for positive functions. For any complex function g, just decompose it into u = Reg, v = Img
then u+, u−, v+, v−. Apply the above formula repeatedly, the proof is complete.

Exercise 52 The Fubini-Tonelli theorem is valid when (X,M, µ) is an arbitrary measure space and Y is a
countable sets, N = P(Y ), and ν is counting measure on Y .

Proof. If f ∈ L+(X × Y ), since ν is the counting measure, identify it with N. Then∫
X

∫
N
fx(n)dνdµ =

∫
X

( ∞∑
1

fx(n)

)
dµ =

∫
N

∫
X

fn(x)dµdν =

∞∑
1

(∫
X

fn(x)dµ

)
=

∫
fd(µ× ν)

therefore Fubini-Tonelli theorem is true.

3 Chapter 3: Signed Measures and Differentiation
Exercise 1 Prove Proposition 3.1.

Proof. Suppose {Ej} an increasing sequence, Fj = Ej\ ∪j−1
1 Ei, since µ(Ej) =

∑n
k=1 µ(Fk),

µ(∪jEj) = µ(∪jFj) =
∑
j

µ(Fj) = limµ(Ej)

Suppose {Ej} an decreasing sequence, since µ(E1) <∞,

µ(∩jEj) = µ(E1\(E1\ ∩j Ej)) = µ(E1)− µ(∪j(E1\Ej)) = µ(E1)− lim(µ(E1)− µ(Ej)) = limµ(Ej)

Exercise 3 Let ν be a signed measure on (X,M).
(a) L1(ν) = L1(|ν|)
(b) If f ∈ L1(ν), |

∫
fdν| ≤

∫
|f |d|ν|

(c) If E ∈ M, |ν|(E) = sup{|
∫
E
fdν| : |f | ≤ 1}.

Proof. (a) Let ϕ ∈ L1 be a simple function, and write ϕ =
∑n

i=1 aiχEi
, then∫

ϕd|ν| =
n∑

i=1

ai|ν|(Ei) =

n∑
i=1

ai(ν
+(Ei) + ν−(Ei)) =

∫
ϕdν+ +

∫
ϕdν−

since for any f ∈ L1(ν), f ∈ L1(ν+) ∩ L1(ν−), thus∫
|f |d|v| =

{∫
ϕd|ν| : ϕ ∈ L+ simple, ϕ ≤ |f |

}
=

∫
|f |dv+ +

∫
|f |dv− ≤ ∞

hence L1(ν) ⊂ L1(|ν|). The converse is obviously true.
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(b) ∣∣∣∣∫ fdν

∣∣∣∣ = ∣∣∣∣∫ fdν+ −
∫
fdν−

∣∣∣∣ = ∣∣∣∣∫ fdν+ −
∫
fdν−

∣∣∣∣ ≤ ∫ |f |dv+ +

∫
|f |dv− =

∫
|f |d|ν|

(c) Suppose g = χB − χA, where A and B are the hahn decomposition of ν. Then∫
E

gdν =

∫
(χB − χA)χEdν =

∫
χB∩Edν

+ +

∫
χA∩Eν

− = ν+(E) + ν−(E) = |ν|(E)

If |ν|(E) = ∞, the proof is done. Otherwise assume that |ν|(E) <∞, and let f be a measurable function with
|f | ≤ 1. Then |

∫
E
fdν| ≤

∫
E
|f |d|ν| ≤ |ν|(E). Therefore

|ν|(E) ≤
{
|
∫
E

fdν| : |f | ≤ 1

}
≤ |ν|(E)

the proof is complete.

Exercise 4 If ν is a signed measure and λ, µ are positive measures such that ν = λ − µ, then λ ≥ ν+ and
µ ≥ ν−.

Proof. Suppose hahn decomposition A,B for ν, then ∀E ∈ M,

λ(E) ≥ λ(E ∩B) ≥ ν(E ∩B) = ν+(E ∩B) ≥ ν(E)

the same argument goes for µ ≥ ν−.

Exercise 5 If ν1, ν2 are signed measures that both omit the value +∞ or −∞, then |ν1 + ν2| ≤ |ν1|+ |ν2|.

Proof. Obviously ν1 + ν2 is still a signed measure, and ν1 + ν2 = (ν+1 + ν+2 ) − (ν−1 + ν−2 ). By exercise 4,
(ν+1 + ν+2 ) ≥ (ν1 + ν2)

+ and (ν−1 + ν−2 ) ≥ (ν1 + ν2)
−. Therefore

|ν1 + ν2| = (ν1 + ν2)
+ + (ν1 + ν2)

− ≤ (ν+1 + ν+2 ) + (ν−1 + ν−2 ) = |ν1|+ |ν2|

Exercise 6 Suppose ν(E) =
∫
E
fdµ where µ is a positive measure and f is an extended µ-integrable function.

Describe the Hahn decompositions of ν and the positive, negative, and total variations of ν in terms of f and
µ.

Solution. P = {x : f(x) ≥ 0}, N = {x : f(x) < 0}. ν+ =
∫
E∩P

fdν, ν− = −
∫
E∩N

fdν, |ν| = ν+ + ν−.

Exercise 7 Suppose that ν is a signed measure on (X,M) and E ∈ M.
(a) ν+(E) = sup{ν(F ) : F ∈ M, F ⊂ E} and ν−(E) = − inf{ν(F ) : F ∈ M, F ⊂ E}.
(b) |ν|(E) = sup{

∑n
1 |ν(Ej)| : n ∈ N, E1, · · · , En are disjoint, and ∪n

1Ej = E}.

Proof. (a) Let A and B be the hahn decomposition. Then

ν+(E) = ν+(E ∩ P ) ≤ sup{ν(F ) : F ⊂ E}

moreover, if F ⊂ E, then
ν(F ) = ν+(F ) ≤ ν+(E)

therefore
ν+(E) = sup{ν(F ) : F ⊂ E}

the similar argument works for v−(E).
(b) Denote RHS with t.

|ν|(E) = |ν(E ∩A)|+ |ν(E ∩B)| ≤ t

moreover,
n∑
1

|ν(Ej)| ≤
n∑
1

(ν+(Ej) + ν−(Ej)) = ν+(E) + ν−(E) = |ν|(E)

the proof is complete.
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Exercise 8 ν � µ iff |ν| � µ iff ν+ � µ and ν− � µ.

Proof. Suppose µ(E) = 0, then |ν|(E) = 0 iff ν+(E) = ν−(E) = 0. If ν � µ, since ∀F ∈ M that is contained
in E, ν(F ) = µ(F ) = 0, by exercise 2, |ν|(E) = 0. The converse is trivial.

Exercise 9 Suppose {vj} is a sequence of positive measures. If νj ⊥ µ for all j, then
∑∞

1 νj ⊥ µ; and if
νj � µ for all j, then

∑∞
1 νj � µ.

Proof. The second part is trivial by countable additivity. For the first part, denote Ej the νj-null set and Ec
j

the µ-null set, then ∩jEj is
∑∞

1 νj-null and (∩jEj)
c is µ-null.

Exercise 10 Theorem 3.5 may fail when ν is not finite.

Solution. Take dν(x) = dx/x and dµ(x) = dx on (0, 1). Then obviously ν � µ, but consider En = (0, 1/n),
obviously ν(En) > 1.

Exercise 11 Let µ be a positive measure. A collection of functions {fα}α∈A ⊂ L1(µ) is called uniformly
integrable if for every ϵ > 0 there exists δ > 0 such that |

∫
E
fαdµ| < ϵ for all α ∈ A whenever µ(E) < δ.

(a) Any finite subset of L1(µ) is uniformly integrable.
(b) If {fn} is a sequence in L1(µ) that converges in the L1 metric to f ∈ L1(µ), then {fn} is uniformly

integrable.

Proof. (a) Since f ∈ L1(µ), the finite signed measure E 7→
∫
E
fdµ is absolutely continuous with respect to µ.

Therefore for any ϵ > 0, ∃ δα such that |
∫
E
fαdµ| < ϵ when µ(E) < δα. Just take δ = min{δα} > 0.

(b) For any ϵ > 0, there exists N ∈ N such that
∫
|fn − f |dµ < ϵ/2 for any n ≥ N . Let I = {0, 1, 2, · · · , N}

(with f0 = f), then {fi}i∈I is uniformly integrable. Therefore ∃ δ > 0 such that |
∫
E
fidµ| < ϵ/2 for any i ∈ I

with µ(E) < δ. Then for i ∈ N\I,∣∣∣∣∫
E

fndµ

∣∣∣∣ = ∣∣∣∣∫
E

(fn − f)dµ+

∫
E

fdµ

∣∣∣∣ ≤ ∣∣∣∣∫
E

(fn − f)dµ

∣∣∣∣+ ∣∣∣∣∫
E

fdµ

∣∣∣∣ ≤ ϵ

Exercise 12 For j = 1, 2, let µj , νj be σ-finite measures on (Xj ,Mj) such that νj � µj . Then ν1 × ν2 �
µ1 × µ2, and

d(ν1 × ν2)

d(µ1 × µ2)
(x1, x2) =

dν1
dµ1

(x1)
dν2
dµ2

(x2)

Proof. If (µ1 × µ2)(E) = 0, then
0 =

∫
µ2(E

x1)dµ1(x1)

therefore µ2(E
x1) is µ1 a.e. and hence ν2(Ex1) is ν1 a.e., then

(ν1 × ν2)(E) =

∫
ν2(E

x1)dν1(x1) = 0

The second part is verified by

(ν1 × ν2)(E) =

∫
fχEd(µ1 × µ2) =

∫ [∫
fχEdµ2(x2)

]
dµ1(x1)

=

∫
ν2(E

x1)dν1(x1) =

∫ [∫
E

dν2
dµ2

(x2)dµ2(x2)

]
dν1(x1)

=

∫ [∫
χE

dν1
dµ1

(x1)
dν2
dµ2

(x2)dµ2(x2)

]
dµ1(x1)
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Exercise 13 Let X = [0, 1], M = B[0,1], m is the Lebesgue measure, and µ is the counting measure on M.
(a) m� µ but dm 6= fdµ for any f .
(b) µ has no Lebesgue decomposition with respect to m.

Proof. (a) The first part is trivial. Suppose there exists such f , then m({x}) = f(x) = 0, therefore f = 0 and

1 = m(X) =

∫
X

fdµ = 0

contradiction.
(b) Suppose that µ has a Lebesgue decomposition λ+ ρ with respect to m, with λ ⊥ m and ρ � m. Then

ρ({x}) = 0, and λ({x}) = 1. Suppose X = A t B the Lebesgue decomposition with λ(A) = m(B) = 0. Then
A = ∅, then m(B) = m(X) = 1, contradiction.

Exercise 16 Suppose that µ, ν are σ-finite measures on (X,M) with ν � µ, and let λ = µ+ν. If f = dν/dλ,
then 0 ≤ f < 1 ν-a.e. and dν/dµ = f/(1− f).

Proof. Let En = {x : f(x) < −1/n}. Therefore

−n−1λ(En) ≥
∫
En

fdλ = ν(En) ≥ 0

and hence µ(En) ≤ λ(En) = 0. It follows that µ(∪∞
1 En) = 0, so f ≥ 0 µ-a.e. Set F = {x : f(x) ≥ 1}. Since ν

is σ-finite, there is a sequence Fn of subsets of F which cover F such that ν(Fn) <∞ for each n. Because

ν(Fn) =

∫
Fn

fdλ ≥
∫
Fn

1dλ = λ(Fn) = µ(Fn) + ν(Fn)

µ(Fn) = 0. Thus µ(F ) = 0 and f < 1 µ-a.e. Therefore f, 1− f ∈ L+, so for each E ∈ M,∫
E

(1− f)dλ+ ν(E) =

∫
E

1dλ = λ(E) = µ(E) + ν(E)

Thus
∫
E
(1 − f)dλ = µ(E) for any ν(E) < ∞. This result extends to all E ∈ M since ν is σ-finite. Thus

dµ/dλ = (1− f). Therefore
dν

dµ
=
dν

dλ

dλ

dν
=

f

1− f

Exercise 17 Let (X,M, µ) be a finite measure space, N a sub-σ-algebra of M, and ν = µ|N . If f ∈ L1(µ),
there exists g ∈ L1(ν) such that

∫
E
fdµ =

∫
E
gdν for all E ∈ N ; if g′ is another such function then g = g′ ν-a.e.

Proof. Define λ on N by λ(E) =
∫
E
fdµ, since ρ� ν, the rest is obvious by the Radon-Nikodym theorem.

Exercise 18 Prove Proposition 3.13c.

Proof. The second part is obvious: ∣∣∣∣∫ fdν

∣∣∣∣ = ∣∣∣∣∫ f
dν

d|ν|
d|ν|

∣∣∣∣ ≤ ∫ |f | d|ν|

Suppose dν = gdµ. Since ∫
|f |dν =

∫
|f |gdµ ≤

∫
|fg|dµ =

∫
|f |d|ν|

L1(|ν|) ⊂ L1(ν). Conversely, suppose f ∈ L1(ν), let ν = νr + νi where νr and νi are real and imaginaty part of
ν, then f ∈ L1(|νr|+ |νi|). Therefore∫

|f |d|ν| ≤
∫

|f |(d|νr|+ d|νi|) ≤ ∞

which concludes L1(|ν|) ⊂ L1(ν).
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Exercise 19 If ν, µ are complex measures and λ is a positive measure, then ν ⊥ µ iff |ν| ⊥ |µ| and ν � λ iff
|ν| � λ.

Proof. Suppose ρ = |νr| + |νi| + |µr| + |µi|, and dν = f1dρ, dµ = f2dρ. If ν ⊥ µ, suppose the corresponding
null sets be P and N . Obviously ν is null on P iff |ν| is null on P , similarly for µ. For the second part, suppose
λ(E) = 0, if ν(E) = 0, then for any A ⊂ E that is measurable,

λ(A) = 0 =

∫
A

f1dρ

therefore ∫
E

|f1|dρ = |ν|(E) = 0

which completes the proof.

Exercise 20 If ν is a complex measure on (X,M) and ν(X) = |ν|(X), then ν = |ν|.

Proof. Suppose dν = fdµ. Then for any measurable set E ⊂ X,

ν(E) + ν(Ec) = |ν|(E) + |ν|(Ec)

therefore ∫
E

fdµ+

∫
Ec

fdµ =

∫
E

|f |dµ+

∫
Ec

|f |dµ,
∫
E

(f − |f |)dµ =

∫
Ec

(|f | − f)dµ

Let f = fr + ifi, where fr and fi are real functions. Then∫
E

(fr − |f |)dµ+ i

∫
E

fidµ =

∫
Ec

(|f | − fr)dµ− i

∫
Ec

fidµ

by comparing the real part and since fr ≤ |f |,∫
E

(fr − |f |)dµ =

∫
Ec

(|f | − fr)dµ = 0

therefore |f | = fr µ-a.e. Thus
|ν|(E) =

∫
E

|f |dµ =

∫
E

fdµ = ν(E)

Exercise 21 Let ν be a complex measure on (X,M). If E ∈ M, define

µ1(E) = sup

{
n∑
1

|ν(Ej)| : n ∈ N, E1, · · · , En disjoint, E =

n⋃
1

Ej

}
,

µ2(E) = sup

{ ∞∑
1

|ν(Ej)| : n ∈ N, E1, · · · disjoint, E =

∞⋃
1

Ej

}
,

µ3(E) = sup

{∣∣∣∣∫
E

fdµ

∣∣∣∣ : |f | ≤ 1

}
.

Then µ1 = µ2 = µ3 = |ν|.

Proof. It is obvious that µ1 ≤ µ2. To see that µ2 ≤ µ3, let

f =

∞∑
k=1

ν(Ek)

|ν(Ek)|
χEk

obviously |f | ≤ 1. Suppose a ∈ {r, i} and b ∈ {+,−} then 1 ∈ L1(νba). Therefore by DCT,∫
fdνba = lim

n→∞

∫ n∑
k=1

ν(Ek)

|ν(Ek)|
χEk

dνba =

∞∑
k=1

ν(Ek)

|ν(Ek)|
νba(Ek)
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It follows that ∫
fdν =

∫
fdνr + i

∫
fdνi =

∫
fdν+r −

∫
fdν−r + i

∫
fdν+i − i

∫
fdν−i

=

∞∑
k=1

ν(Ek)

|ν(Ek)|
ν(Ek) =

∞∑
k=1

|ν(Ek)|

Now show that µ3 = |ν|. Let f = dν/d|ν|. By prop 3.13,∫
E

fdν =

∫
E

ffd|ν| = |ν|(E) ≤ µ3(E) ≤
∣∣∣∣∫

E

1dν

∣∣∣∣ = |ν(E)| ≤ |ν|(E)

It remains to show that µ3(E) ≤ µ1(E). Suppose |f | ≤ 1, then there exists a increasing sequence ϕk of simple
functions which converges pointwise to f . Let

ϕk =

nk∑
j=1

ckjχEkj

be the standard representation of ϕk. By DCT,∫
E

fdνba = lim
k→∞

nk∑
j=1

ckjν
b
a(Ekj ∩ E)

hence ∫
E

fdν = lim
k→∞

nk∑
j=1

ckjν(Ekj ∩ E)

thus ∣∣∣∣∫
E

fdν

∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣
nk∑
j=1

ckjν(Ekj ∩ E)

∣∣∣∣∣∣ ≤ lim
k→∞

nk∑
j=1

|ν(Ekj ∩ E)| ≤ µ1(E)

Exercise 22 If f ∈ L1(Rn), f 6= 0, there exist C,R > 0 such that Hf(x) ≥ C|x|−n for |x| > R.

Proof. If ||f || > 0, then there exists R ∈ (0,∞) such that
∫
BR(0)

|f |dm > 0. If x ∈ Rn\BR(0), then BR(0) ⊂
B2|x|(x). Therefore

Hf(x) ≥ A2|x||f |(x) ≥
1

|x|nm(B2(0))

∫
BR(0)

|f |dm = C|x|−n

If α ∈ (0, C/2Rn) and R < |x| < (C/α)1/n, then Hf(x) ≥ α and

m({x : Hf(x) > α}) ≥ m(B(C/α)1/n)−m(BR(0)) > Cm(B1(0))/2α

Exercise 23 A useful variant of the Hardy-Littlewood maximal function is

H∗f(x) = sup

{
1

m(B)

∫
B

|f(y)|dy : B is a ball and x ∈ B

}
Show that Hf ≤ H∗f ≤ 2nHf .

Proof. It is clear that Hf(x) ≤ H∗f(x). For the other inequality, suppose x ∈ Br(y), then Br(y) ⊂ B2r(x),
by writing down definitions it is easy to see the inequality is true.
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Exercise 24 If f ∈ L1
loc and f is continuous at x, then x is in the Lebesgue set of f .

Proof. Since f is continuous at x, ∀ ϵ > 0, there exists r > 0 such that |f(y) − f(x)| < ϵ for any y ∈ Br(x).
Therefore

1

m(B(r, x))

∫
B(r,x)

|f(y)− f(x)|dy ≤ 1

m(B(r, x))

∫
B(r,x)

ϵdy = ϵ

therefore limr→0Ar|f(y)− f(x)| = 0.

Exercise 25 If E is a Borel set in Rn, the density DE(x) of E at x is defined as

DE(x) = lim
r→0

m(E ∩B(r, x))

m(B(r, x))

whenever the limit exists.
(a) Show that DE(x) = 1 for a.e. x ∈ E and DE(x) = 0 for a.e. x ∈ Ec.
(b) Find examples of E and x such that DE(x) is a given number α ∈ (0, 1) or such that DE(x) does not

exist.

Proof. (a) Define µ(A) = m(E∩A). Then µ = χEdm. Suppose m(A) <∞, for any ϵ > 0, there exists an open
set U such that m(U) < m(A)+ ϵ. Therefore µ(U) < µ(A)+ ϵ. Now for any A that is measurable, take Ak such
that m(Ak) <∞ and A = ∪kAk. Then for each k there exists an open set Uk such that µ(Uk) < µ(Ak) + 2−kϵ.
Thus µ(∪kUk\A) < ϵ, which implies that µ is regular. So for a.e. x ∈ Rn,

DE(x) = lim
r→0

µ(Br(x))

m(Br(x))
= χE(x)

(b) Suppose E = {x : xi > 0} and x = 0. Then DE(x) = 2−n.

Exercise 26 If λ and µ are positive, mutually singular Borel measures on Rn and λ + µ is regular, then so
are λ and µ.

Proof. Condition (i) holds trivially. For condition (ii), since µ ⊥ λ, suppose P is µ-null and P c is λ-null.
Since λ + µ is regular, for any E ⊂ P that is Borel measurable, there exists an open set U such that λ(U) <
λ(U) + µ(U) < λ(E) + ϵ for any ϵ > 0, therefore λ is regular. The same goes for µ.

Exercise 27 Verify Example 3.25.

Proof. (a) is obvious since limx→∞ TF (x) = F (∞)− F (−∞) <∞.
(b) If F,G ∈ BV , then

n∑
1

|aF (xj) + bG(xj)− aF (xj−1)− bG(xj−1)| ≤
n∑
1

(a|F (xj)− F (xj−1)|+ b|F (xj)− F (xj−1)|)

therefore TaF+bG(x) ≤ aTF (x) + bTG(x), the rest is obvious.
(c) Since F is differentiable on R and F ′ is bounded, by the mean value theorem,

n∑
1

|F (xj)− F (xj−1)| =
1∑
n

|F ′(cj)||xj − xj−1| ≤ |M ||b− a|

therefore the variation on [a, b] is bounded.
(d) sinx ∈ BV ([a, b]) by (c). To see sinx 6∈ BV , just take xj = −π/2 + 2πj.
(e) Just take xj = 1/(π/2 + 2πj).
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Exercise 30 Construct an increasing function on R whose set of discontinuities is Q.

Proof. Enumerate rational numbers Q = {qi}. Define f :=
∑

i 2
−iχ(qi,∞). Obviously f(x) ≤ f(y) if x ≤ y.

Suppose ϵ > 0 and take N such that 2−N < ϵ. There exists δ > 0 such that (x− δ, x)∪ (x+ δ) does not contain
q1, · · · , qN . If y ∈ (x− δ, x), then

f(x) ≥ f(y) = f(x)−
∑

y≤qi<x

2−i ≥ f(x)− ϵ

therefore f is left continuous. If y ∈ (x, x+ δ) then

f(x) ≤ f(y) = f(x) +
∑

x≤qi<y

2−i

if x 6∈ Q, by the same argument f is right continuous. If x ∈ Q, say x = qn, then

f(x) + 2−n ≤ f(y) < f(x) + 2n + ϵ

which is not continuous.
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