Real Analysis (Folland) Exercises

An Nan
December 19, 2022

Contents

h Chapter 1: Measuresi 1
kz Chapter 2: Integratiod 8
|3 Chapter 3: Signed Measures and Diﬁ'erentiatiorJ 18

1 Chapter 1: Measures

Exercise 2 Show that By is generated by each of the following:
(a) the open intervals &1 = {(a,b) : a < b},
(b) the closed intervals & = {[a,b] : a < b},
(c) the half-open intervals & = {(a,b] : @ < b)} or €3 = {(a,b] : a < b)},
(d) the open rays & = {(a,00) : a € R} or & = {(—00,a) : a € R},
(e) the closed rays &7 = {[a,00) a € R} or & = {(—00,a] : a € R}.

Proof. Recall lemma 1.1, which states if £ C M(F), then M(E) C M(F). It is easy to observe & C Bg,
therefore M(&;) C Bg.

(a) Since every open set can be written as a countable union of intervals, denote O as the set of all open
sets, then O C M(&7), Bg C M(&1). Hence Br = M(&).

(b) Attempt to show & C M(&;). Apparently (a,b) = US2 [a+ 1/n,b— 1/n].

(c) & € M(&3) since (a,b) = U2 (a,b — 1/n]. The same goes for &y.

(d) & C M(&5) since (a, b] = (a,00) N ((b,00))¢. The same argument goes for &.

(e) &4 C M(&7) since [a,b) = [a, o0] N ([b, 00))C.

Therefore Bg = M(&;). O

Exercise 4 An algebra A is a o-algebra iff A is closed under countable increasing unions.

Proof. If A is closed under countable increasing unions, for any countable collection of sets {F;} in A, let
Ey=F, Ey,=FE,UF,, E, = E,,_1 UF,, then {E,} is an increasing sequence of sets, therefore U3, E,, =
Us2, Fy € A. Therefore A is a o-algebra. The reverse is trivial. O

Exercise 5 If M is the o-algebra generated by £, then M is the union of o-algebras generated by F as F
ranges over all countable subsets of £.

Proof. Let A be the index set of all countable subsets of £. First claim that B = UycaM(F,) is a o-algebra.
VE € B, E € M(F,), therefore E¢ € B. Given a countable collection of sets {E;} in B, since E; € M(F,),
Ej; must be in at least one M(F;). Let H = U2, F;, consider M(H). Obviously {E;} € M(H), therefore
U2, B € M(H). Since H is also a countable subset of £, M(H) C B. Therefore B is indeed a o-algebra.

It is straightforward that £ C B. For the reverse, V E € B, E is in some o-algebra generated by F,, therefore
E e M. Thus M = B. O



Exercise 6 Suppose that (X, M, u) is a measure space. Let N' = {N € M : u(N) =0} and M = {EUF :
Ee M,FCN € N}. Then M is a o-algebra, and there is a unique extension 7 of ;1 to a complete measure
on M.

Proof. Apparently M is closed under countable unions. For any E € M,F C N € N, without the loss of
generality assume ENN = & (otherwise replace N, F' with N\E and F\E). Then EUF = (EUN)N(N°UF),
(EUF)*=(EUN)°U(NNF°° e M. Therefore M is a o-algebra.

Now consider the extension fi. Let f(E U F) = p(E). This is well-defined since if Ey U Fy = Ep U Fy then
Ey C E3 U Ny, u(Eq) < u(Esy), and likewise p(Eq) > p(Es), thus p(Ey) = p(Es). Then (@) = u(o U @) = 0,
and the countable additivity can be likewise easily verified. For the uniqueness, give any other measure 17/,

F(EUF)<T/(EUN)<u(E). Bu g (FUF) >/ (EU@) = u(E), thus @’ = 7. O
Exercise 7 If pi1,..., 1, are measures on (X, M) and ay,...,a, € [0,00), then > 7 a;ju; is a measure on
(X, M).

Proof. Let y/ = Y [ ajuj. Then p/(@) = 0, given any collection disjoint sets {E;} in M, p/(UPE;) =
SOV aipi (U Ey) = 3200 Do ajpg(Ey) = Y272, i/ (Ej), therefore p' is also a measure. O

Exercise 8 If (X, M,p) is a measure space and {E;}° C M, then p(liminf E;) < liminf 4(E;). Also,
p(limsup E;) > limsup u(E;) provided that p(UPE;) < oo.
Proof. Recall o e o e

liminf E; = U ﬂEi, limsup E; = m UE’

j=1i=j j=1i=j
observe that {A; = N E;} gives a sequence such that A; C Ay---, since p is a measure, p(liminf £;) =
(U521 Aj) = limy o0 u(A;) < liminf u(E;). For the second claim, in the same sense let {B; = UC  E;}, then
p(limsup E;) = lim;_,o p(B;) > limsup p(B;). O

Exercise 9 If (X, M, u) is a measure space and E, F € M, then pu(E) + u(F) = wW(EUF) + u(ENF).
Proof. Since p is a measure, pu(E)+p(F) = p(ENF)+p(ENF)+u(ENF)+u(E°NF) = W(EUF)+p(ENF). O

Exercise 10 Given a measure space (X, M, u) and E € M, define ug(A) = p(ANE) for A € M. Then ug
is also a measure.

Proof. Apparently y155(2) = 0. Given any collection of disjoint sets {A;} in M, pp(U52; A;) = p(U52, A;NE) =
wUZ (4, NE)) = Z;’il pe(Aj). Therefore pgp is a measure. O

Exercise 11 A finitely additive measure p is a measure iff it is continuous from below. If u(X) < oo, p is a
measure iff it is countinuous from above.

Proof. Given a finitely additive measure p, if it is continuous from below, then given a sequence of disjoint
sets {E;}, let {4; = UL E;}, p(U;E;) = p(UjA4;) = im0 u(Ay), by finite additivity lim, o p(A,) =
limy, 00 Yoimq p(Ei) = Y021 p(Ej). For the second claim, let {B; = A}, then U;E; = U;A; = (N;(A5))° =
(N;(By))¢, therefore u(U;E;) + p(N;B;) = p(X). By continuity from above, pu(N;B;) = lim;_,o p(B;) =
w(X) — limj_,00 1(A;), the rest is the same as the previous argument. O

Exercise 12 Let (X, M, 1) be a finite measure space.

(a) It E,F € M and p(EAF) =0, then u(E) = u(F).

(b) Say that E ~ F if u(EAF). Then ~ is an equivalence relation on M.

(¢) For E,F € M, define p(E,F) = u(EAF). Then p(E,G) < p(E,F) + p(F,G), and hence p defines a
metric on the space M/ ~.



Proof. Recall EAF = (E\F)U (F\E).

(a) Since E\F and F\E are disjoint, u(EAF) = p(E\F) + p(F\E). Since E = (E\F)U(ENF), F =
(F\E)U(ENF), W(EAF) = u(E) + u(F) — 2u(E N F). Notice that u(E) > u(ENF), w(F) > p(ENF),
therefore when u(EAF) =0, u(E) = p(F) = p(ENF).

(b) Since “="is an equivalence relation on [0, 00), “~” is obviously also an equivalence relation.

(c) Attempt to verify u(EAG) < u(EAF) + u(FAG):

WEAG) = n(E\G) + n(G\E)

n(E) + u(G) = 2u(ENG)

< u(E) +2u(F) + w(G) = 2u(ENF) = 2u(F N G)
1(

)+
ENAF) + p(FAG)

where the inequality u(F) + u(ENG) = pW(FNE‘NG )+ pw(FNG NE)+ u(FNGNE)+2u(FNGNE) +
WENGNF) > u(FNENG)+u(FNGNES)+2u(ENFNG)=w(ENF)+ u(FNG) is utilized. O

Exercise 14 If y is a semifinite measure and u(E) = oo, for any C' > 0 there exists FF C E with C < u(F) < oo.

Proof. Assume that there exists C' > 0 such that VF C E, u(F) < C, then sup{u(F) : FF C E} < C. Denote
the supremum with S. Then Vn € N,3F,, C F such that S —1/n < p(F,) < S. Since F' = U2, F,, C E,

w(F") = S. Then consider E\F'. Obviously u(E\F’) = co. Because p is semifinite, there exist F” such that
0 < u(F") < oco. Then u(F'UF") > S, contradiction. Therefore there is no supremum. O

Exercise 15 Given a measure p on (X, M), define g on M by ug(E) = sup{u(F) : F C Fand u(F) < oo}.
(a) po is a semifinite measure. It is called the semifinite part of p.
(b) If w is semifinite, then p = pg.
(c) There is a measure v on M (in general, not unique) which assumes only values 0 and oo such that
M= po + V.

Proof. (a) First verify that ug is a measure. Obviously po(@) = 0. Give any collection of disjoint sets {E;}, let
E = U372, E;. For a measurable set I C E and p(F') < oo, u(F) = >, p(FNE;) <37, po(E;). Since this holds
for any subset of £ that has finite measure, yio(E) < 3_; Mo( ). If ,uo( ) = 00, then the reverse trivially holds.
Otherwise po(E) < oo. Then for each Fj, Ve/27, there exists F; C E; such that puo(E;)—€/27 < u(F;) < po(Ej).
Then fio(E) > p(U52,Fy) = >, po(E;) — €. Therefore po(E) = 3, #0( i)s to is a measure.

Given a E such that po(E) = oo, take any C' > 0, then Efg C E such that C' < p(F) < oco. Then
1o (F) = p(F) is non-zero and finite. Therefore i is a semifinite measure.

(b) For any F € M, if u(E) < oo, then u(E) = puo(E). If u(E) = oo, then by Exercise 14 pg(E) = 0.
Therefore p = pg.

(c) Let

W(B) {0, if F is o-finite

00, otherwise

v is a measure since the disjoint union of o-finite sets is still a o-finite set, and if there is a set that is not o-finite
in the collection the union will also not be o-finite. Now verify u(E) = po(E) + v(E). When E is o-finite, if
w(E) is finite, then the quality holds. If u(E) is not finite, then by previous exercise ug(E) = oo, the quality
still holds. If F is not o-finite, the quality holds trivially. O

Exercise 16 Let (X, M, u) be a measure space. A set £ C X is called locally measurable if for all A € M
such that pu(A) < co, ENA € M. Let M be the collection of all locally measurable sets. Clearly M C M; if

M = M, then w is called saturated.
(a) If p is o-finite, then p is saturated.
(

(¢c) Define fi on M by it = u(E) if E € M and i(E) = oo otherwise. Then i is a saturated measure on M,
called the saturation of u.
(d) If p is complete, so is fi.

b) M is a o-algebra.



(e) Suppose that p is semifinite. For E € M, define w(E) = sup{u(A) : A€ Mand A C E}. Then p is a
saturated measure on M that extends L.

(f) Let X1, X5 be disjoint uncountable sets, X = X; U X, and M the o-algebra of countable or co-countable
sets in X. Let po be counting measure on P(X;) and define p on M by u(E) = po(E N X1). Then pis a
measure on M, M = P(X), and in the notation of (c) and (e), iz # p.

Proof. (a) Since y is o-finite, there exists a countable collection of disjoint sets {£;} such that X = U2, E
and p(E;) < co. Therefore VE € M, for each E;,,ENE; € M. Thus E = U?(EN E;) € M. Hence M= M.

(b) VE € M, VA € M such that u(A) < co, EN A= (AN (EN A)) € M, therefore E° € M. Give any
countable collection of sets {E;} in M, for any A € M that has finite measure, (U;E;)NA=U;(E;NA) € M.
Thus M is a o-algebra.

(c) First check that jz is a measure. Apparently i(&) = 0. Given any countable collection of disjoint sets
{E;}in M, if E; € M for each j, then the additivity trivially holds. If 3¢ such that E; ¢ M, assume U;E; € M.
Obviously U; E; cannot have finite measure. Therefore the equality still holds. Then check that i is saturated.
VE, if VA € M such that (A) < oo, ANE € M, then u(A) < oo, therefore p(ANE) < 0o, ANE € M,
Ee M. B

(d) VN € M, if g(N) = 0, then because u is complete, VF C N, fi(F) = 0. Therefore f is also complete.

(e) First verify u is a measure. Obviously p(@) = 0. Given any countable collection of disjoint sets {£;}

in M, assume they are all finite. VE;, 3A; such that A; € M, A; C Ej, u(E;) — €/27 < p(A;) < p(E;).
Then p(U;E;) > p(UjA4;5) > > p(Ej) — €, therefore u(U] 5) > Z w(Ej). 7For the reverse inequality, take
A € M such that p(U;E;) —e < pu(A) < p(U;Ej), since A C UJE and ,u(A) <00, Aj = ANE; € M, therefore
WU E;) —e < u(A) < 325 p(Ej). Therefore the reverse inequality holds, p(U; Ej ) Z u(E ) For the infinite
case, since p is semlﬁnlte by exercise 14 both inequality hold trivially. If £ € ./\/l then w(E ) w(E) since p is

semifinite. Therefore p is an extend of p.

Now check that p is saturated. VE € M, YA € M such that u(A) < co, ENA € M. Then ENA =
ENAnAeM. -

(f) Since pg is a well-defined measure, it is straightforward that p is also a measure. VA C X, given any B
such that B € M and u(B) < oo, since BN X is finite, B must be countable. Therefore BN A is also countable,

BN AcC M. Therefore M = P(X). Obviously fi # u, one example may be {z1} U Xy where z; € X;. O

Exercise 17 If p* is an outer measure on X and {4;}7° is a sequence of disjoint p*-measurable sets, then
pH(EN(UPA)) =7 p*(ENA;) for any E C X.

Proof. Since U;(ENA;) = EN (U;A;), p*(EN(U°A;)) < S 7w (E N A4;). For the reverse inequality, let
B,, = U A;. Then p*(ENB,,) = p*(ENA,)+p* (ENB,NAS) = p* (ENAp)+p* (ENBp_1) = Y i n*(ENA).
Since u*(E N Bo) > p*(EN By,) =Y. 1 p*(ENA;) for any n, p*(E N (UPA))) > > w*(ENA4;). O

Exercise 18 Let A C P(X) be an algebra, A, the collection of countable unions of sets in A, and A,s the
collection of countable intersections of sets in A,. Let ug be a premeasure on A and p* the induced outer
measure.

(a) ForanyECXande>0thereexistsAEA with £ C A and p*(A4) < u*(E) +

(b) If p*(E) < o0, then E is p*-measurable iff there exists B € Ays with E C B and I (B\E) =0.

(¢) If uo is o-finite, the restriction p*(E) < oo in (b) is superfluous.

Proof. (a) Recall the definition of the outer measure p* on X:

1nf{Zu0 tAje AL ECUjA;,j=12,---}

If p*(E) = oo, the inequality holds trivially. Consider the case where u*(E) < oo. Then Ve > 0, 3{4,} with
Aj € Afor each j and E C U;A; such that p*(UjA;) <37, u*(4;) < p*(E) + e. Therefore take A = U;A;.

(b) If E is p*-measurable, then by the first claim given ¢ = 1/k, k € N, there exists Ay € A, such
that E C Ak, p*(Ax) = p*(ANE) + 1/k. Let B = NpAg. It is obvious that p*(B) = p*(E). Therefore
u*(B) < p* (BN E) + p*(BN B°) = i (B), u*(B\E) = 0.



For the inverse, VA C X, p*(ANE) + pu*(ANE) < p*(ANB)+ p* (ANE“NB°) 4+ p*(ANE‘NB) <
w (ANB)+p* (AQBC) Ve>0,3C € A, such that p*(C) < p*(A)+eand A C C. By Caratheodory’s theorem
w* is a measure on M(A), therefore p*(A) 4+ € > p*(C) = p*(CNB) + p*(CNB°) > p*(ANB) 4+ p* (AN B°).
Therefore p*(A) > u*(ANE) + p*(AN E°).

(¢) Notice that only need to prove the forword direction given that p*(E) = oo. Since pg is o-finite,
3{A4;} C A such that puo(A4;) < oo, X = U;A;. Let E; = ENA,, Ve > 0, take B; € A, and E; C Bj such
that p*(B;) < p*(Ej;) 4 €/27, then p*(B\E) < p*(U;(B;j\E;)) < 32, w*(B\Ej) = >2;(w*(B;) — p*(Ej)) < e
Therefore p*(B\FE) = 0. O

Exercise 19 Let p* be an outer measure on X induced from a finite premeasure pg. If £ C X, define the
inner measure of E to be p.(E) = po(X) — p*(E). Then E is p*-measurable iff p*(E) = pu.(E).

Proof. If E is p*-measurable, then 1o(X) = p*(X) = p*(E) + p*(E°), hence p*(E) = u.(F). For the inverse,
given p*(E) + p*(E°) = po(X), by exercise 18, Vn € N;3 4,, € A, such that E C A, p*(4,) < p*(E) +1/n.
Let A = N,A,, then A € A,5 with E C A. Since A, is p*-measurable, p*(A N E°) < p*(4, N E°) =
H(E) — (A% O E) < pio(X) — i (E) — p(AS) < 1*(An) — p*(E) < 1/n for any n, thus u*(A1 E¥) = 0, therefore
by exercise 18 E is p*-measurable. O

Exercise 20 Let p* be an outer measure on X, M* the o-algebra of py*-measurable sets, @ = p*|M*, and p™
the outer measure induced by u.
(a) If E C X, we have u*(E) < pu+(FE), with equality iff there exists A € M* with E C A and p*(4) = p*(E).
(b) If p* is induced from a premeasure, then p* = pt.
(c) If X ={0,1}, there exists an outer measure u* on X such that u* # u*.

Proof. (a) By the construction of the outer measure, if u*(E) < oo, then Ve > 0,3 E; with E; € M* for each
j, and E C U;Ej; such that p*(E) < 37, p*(E;) < u*(E) + ¢, therefore pu*(E) < p™(E). For the second claim,
when p*(E) = p*(E), one may take E; € M* such that {E;} covers E and p*(E) = p*(E) = 3, p*(Ej).
Thus just take A = U;E;. For the reverse, since A covers E, u*(E) < p™(E) < p*(A). By u*(E) = p*(A) the
equality must be taken.

(b) Since p* is induced from a premeasure, by exercise 18, for any n € N, there exists A,, € M* such that
E C A, and p*(E) < p*(Ap) < p*(E) +1/n. Let A =N, Ay, then A € M* with E C A and p*(4) = p*(E).
By (a) u*(E) = p*(E) for any E C X.

(c) Since P(X) = {@, {0}, {1},{0,1}}, and p* (@) = pu*(2) =0, let

p{0}) =a, p({1}) =b w({0,1}) =c

because of monotonicity, 0 < a < ¢, 0 < b < ¢. Then by subadditivity, a + b > ¢. If {0} or {1} is p*-
measurable, then M* = P(X), @ = p* = p*. Therefore they must not be p*-measurable, a + b # c¢. Then

pt({0}) = pt({1}) = ¢, p* # pt. O
Exercise 21 Let p* be an outer measure induced from a premeasure and f the restriction of p* to the

p*-measurable sets. Then 1 is saturated.

Proof. Give a set E C X such that V A that is p*-measurable, E N A is still u*-measurable and p*(A4) < oo,
now show that E is p*-measurable. For any F' C X that p*(F) < oo, Je > 0 such that A € A, such that
F C Aand

W(F) + e > pt(A) = ' (AN (AN B)) + p*(AN (AN E)°)
= (ANE) + p (AN E®) > p*(F N E) + u*(F N E°)

therefore E is p*-measurable. O



Exercise 22 Let (X, M, ) be a measure space, p* the outer measure induced by pu, M* the o-algebra of
w*-measurable sets, and @ = p*|M*

(a) If u is o-finite, then @ is the completion of p.

(b) In general, [z is the saturation of the completion of .

Proof. (a) Since p is o-finite, if E € M* then 3B € M such that E C B and p*(B\E) = 0. Therefore for any
n €N, 3A, € M such that B\E C A,,, u*(4,) < 1/n. Then let A =nN,A,, u(A) =0, B\E C A. Therefore
(B\A) C E and E\(B\A) C A, E C M. Therefore M* = M. Obviously the measure on M is the same as the
completion of the measure. .

(b) Denote the completion of (i, M) with (i1, M), and the saturation of the completion (fz, M). First show

that M = M*. Give any F that is locally ji-measurable, for any F' C X that p*(F) < oo, exists A € M
such that FF C A and p*(F) +€ > p(4) = pf(AN(ANE)+ (AN (ANE)) > u*(ENF)+ p*(E°NF),
therefore F is p*-measurable. Conversely, if E' is p*-measurable, for any A € M such that fi(A) < 0o, obviously
A € M*, therefore ENA € M*, yp*(ENA) = a(ENA) <oo. Then by (a), ENA € M, therefore E is locally
[-measurable. .

Now show that i = 7i. VE € M, if E is in M, then i(F) = fi(E) since the extension is unique. If E is not
in M, then i(E) = co. If p*(E) < oo, then E € M. Therefore i = 1. O

Exercise 23 Let A be the collection of finite unions of sets of the form (a,b] N Q where —oco < a < b < 0.
(a) A is an algebra on Q.
(b) The c-algebra generated by A is P(Q).
(c) Define pg on A by po(@) = 0 and pg(A) = oo for A # &. Then g is a premeasure on A, and there is
more than one measure on P(Q) whose restriction to A is .

Proof. (a) Obviously Q and @ are in A, and finite unions of elements in A are still in A. Give (a,b] N Q, its
completion is (—oo,a] U (b,00] N Q is still a finite union, therefore A is an algebra.

(b) Since for any a € Q, N2, (a,a+ 1/n)NQ = {a} and Q is countable, any subset of Q may be generated
by single point sets. Therefore M(A) = P(Q).

(c) It is easy to see that ug is finitely additive. Two measures that agree with po when restricted to A may
be given: (1) the counting measure; (2) the outer measure given by pg. They will produce different results on

{0} O

Exercise 24 Let u be a finite measure on (X, M), and let u* be the outer measure induced by p. Suppose
that E C X satisfies p*(E) = p*(X).

(a) f A,Be M and ANE = BNE, then pu(A) = u(B).

(b) Let Mg ={ANE: A€ M}, and define the function v on Mg defined by v(ANE) = p(A). Then Mg
is a o-algebra on F and v is a measure on Mg.

Proof. (a) p*(X\E) = 0. Therefore u(A4) < p*(ANE) + p*(AN E°) = pu*(BNE) = u(B), and the reverse
inequality is also true in the same sense. Therefore p(A) = u(B).

(b) Obviously @ and E are in Mpg. For any A € M, the completion of AN E in E is still in Mg. Mg is
also closed to countable unions since M is a o-algebra. Give any countable collection of disjoint sets {A; N E},
v(UjA; N E) = u(UjA;). Let B, = A,\U} ' A, then B; N E = A; N E. Therefore ju(U;A;) = > 1(Bj) =
S, 1(Ay) = 5, v(A; 0 E). 0

Exercise 25 If £ C R, the following are equivalent:
(a) E € Mpu.
(b) E = V\N; where V is a G5 set and p(N7) = 0.

(¢) E = HU N,y where H is an F, set an u(Nz) = 0.

Proof. Obviously (b) and (c) implies (a). Suppose E € M,, if u(E) < oo, give any positive integer n,
according the previous proposition one may select an open set U,, and a compact set K, such that the error
of their measure is within 1/n. Then by taking the countable union or intersetion one may find such H and
V. If u(E) = oo, let E; = EN (aj,b;]. For any € > 0, for each j, one can find U; such that E; C U; and
w(U;) < u(E;) +279€. Let V = U;Uj, then u(V\E) = > (U;\Ej) < e. In the same sense one can find a
countable union of compact sets, H, such that u(E\H) = 0. O



Exercise 26 If E € M, and u(E) < oo, then for every e > 0 there is a set A that is a finite union of open
intervals such that u(E A A) < e.

Proof. By theorem 1.18, give any € > 0 one can find a compact K and an open U such that u(U) — e <
w(E) < p(K) + e. Therefore one can find finite union of open intervals I = U;I; that K C I C U. Then
p(E A1) = p(E\I) + p(I\E) < 2u(U\K) = 2e. O

Exercise 27 Denote the Cantor set C. Show that if x,y € C and = < y, there exists z ¢ C such that
< z<y.

Proof. If such z does not exist, then x,y must lie in the same interval, which implies |z — y| < 37" for any n,
thus x = y, contradiction. Therefore x and y must not lie in the same interval. Hence 3 N such that x and y
are seperated at the n-th iteration. Thus just pick any z in the middle third of the interval then z < z < y. O

Exercise 28 Let F' be increasing and right continuous, and let p g be the assiciated measure. Then pup({a}) =
F(a) = F(a=), ur([a,b)) = F(b=) — F(a=), pur(a.b]) = F(b) — F(a—), and jup = F(b=) — F(a).

Proof. Since {a} = Ny[a,a+1/n), ur({a}) = p(Np(a—1/n,a]) =lim, o (F(a)— F(a—1/n)) = F(a)— F(a—).
Then pr(la, b)) = pr((a,b]) + p({a}) — p({d}) = F(b—) — F(a—). The rest can be easily shown with the same
argument. O

Exercise 29 Let F be a Lebesgue measurable set.

(a) If E C N where N is the nonmeasurable set (taking one element of each equivalence classin [0,1)/{z—y €
Q}), then m(E) = 0.

(b) If m(E) > 0, then E contains a nonmeasurable set.

Proof. (a) Suppose R =QnN|[0,1). Take B, = {x+r:xz € EN[0,1—7r)}U{z+r—1:2€ EN[l1—7r,1)}. Then
each E, is measurable and a subset of [0,1). Therefore 1 = m([0,1)) > m(U,E,) = >, m(E,) = > . m(E),
m(E) = 0. (b) Because of translation invariance it suffices to consider E C [0,1]. Obviously £ = U,E N N,.
Then if each E N N, is measurable, m(E) = > m(U,.(E N N,)) = > m((E N N)), therefore m(E) = 0,
contradiction. O

Exercise 30 If F € £ and m(E) > 0, for any o < 1 there is an interval I such that m(ENI) > am(I).

Proof. Suppose that there exists an « such that for every open interval I, m(ENI) < am(I). If E is bounded,
then there exists a collection of disjoint open intervals such that E C Upl, with >, m(l) < (1 + e)m(E) for
any € > 0. Then m(E) = m(Up(E N 1)) < >, am(ly) < ol + €)(F), contradiction. If E is not bounded, by
o-finiteness, one may write E = Uy E), where m(Ey) < oo for each k. Take E; such that m(E;) > 0. Then for
any « < 1 there is an interval I such that m(ENI) > m(E; NI) > am(I). O

Exercise 31 If F € £ and m(E) >0, theset E — E = {x —y: z,y € E} contains an interval centered at 0.

Proof. By exercise 30, there is an interval I = (g — o, g + «) such that m(ENT) > 3/4m(I). Suppose there
is a 0 such that 0 < §d <a and § ¢ E — E. Then for any pair z,y € E, x —y # 0. Let E1 = EN (z¢ — a, zo),
Ey =EnN(xzo,z0+a). Then Vo € By, x+0 € I but not in E. Therefore £y 46 C I\E. Similarly E; —§ C I\E.
Then m(ENI) <m(E1) +m(Esy) <2(m(I) —m(INE)) < 2/3m(ENI), contradiction. Therefore § € E — F
and -0 € E—E, (—a,a) CE—E. O

Exercise 33 There exists a Borel set A C [0, 1] such that 0 < m(ANI) < m(I) for every subinterval I of
[0,1].

Proof. Enumerate the subintervals of I with rational endpoints. Then construct a series of cantor sets. For Iy,
split it into two disjoint intervals with finite measure. Then on each subinterval contruct a Cantor set K1, K7,
both with finite measure. Next assume that Ky, -+, K, and K1, -, K/ are already given for I;,--- ,I,. Let
L,=(KiU---UK,)U(K{U---UKY]), then L, is compact and totally disconnected. Therefore I,, 1\ L, must
contain some intervals, namely J,, ;1. Then split J,, 41 and construct K, 1 and K], on each subinterval. Let



K = U,K, and then obviously K is disjoint from K for any n. Since K is the union of some Cantor sets, it
is a borel set.

Let T be some subinterval of [0,1]. Then there must be some I,, such that I, C I. Therefore K,,, K], € I.
Then 0 < m(K, NI,) <m(KNI)<m(KNI)+m(K])<m(I). O

2 Chapter 2: Integration

Let the measurable space be (X, M) for Exercise 1-7.

Exercise 1 Let f: X - Rand Y = f~!(R). Then f is measurable iff f~1({do00}) € M, and f is measurable
onY.

Proof. If f is measurable then f~!({xoc}) € M. Give any borel set B € Bg, f~'(B) € M. Therefore
FTHBNR) = f7Y(B)NY € M, f measurable on Y. Conversely, for any borel set B € By, f~*(B) =
F7H(BNR)U(BN{co,—o0})) € M, f measurable. O

Exercise 2 Suppose f,g: X — R are measurable.
(a) fg is measurable (where 0 - (+00) = 0).
(b) Fix a € R and define h(z) = a if f(z) = —g(z) = +oo and h(z) = f(z) + g(x) otherwise. Then h is

measurable.

Proof. (a) It is easy to see that (fg)~!(£oc) € M. Consider fg on Y = (fg)~*(R). If both f and g are finite,
then fg measurable on this domain Y;. If one of the maps is infinite and the other map is zero, denote this
domain with Y5 € M. Y5 is included in the inverse image of 0. Therefore fg is measurable on Y3 UYs =Y.
Therefore fg is measurable on R by exercise 1.

(b) Obviously (f + g)~'({#o0}) € M. In the same sense consider f + g on Y. If f and g are both finite,
then f + g is measurable on this domain Y;. Otherwise these two maps produce infinity of different signs and
included in the reverse image of a. Therefore f + ¢ is measurable on R. O

Exercise 3 1If {f,} is a sequence of measurable functions on X, then {z : lim f,(z) exists} is a measurable
set.

Proof. Vz € X, lim f,(x) exists if and only if g5(z) = g4(z), where g3(z) = limsup f,(x), g4(x) = liminf f,(z).
Since f,, is measurable for each n, g3 and g4 are measurable, which implies g3 — g4 is also measurable on both R
and R. Therefore {x : lim f, (x) exists} = (g3 — g4) " ({0}) U {g5 " (00)} N {g; * (00)} U {g5* (—00)} N {gs *(—o0)}
is measurable. O

Exercise 4 If f: X — R and f~!((r,]) € M for each r € Q, then f is measurable.

Proof. Vr € R, by the definition of real numbers there is a cauthy sequence of increasing rational numbers ¢,
such that lim g, = 7. Then f=1((r,00]) = f~1(Nn(gn,0]) = Nnf 1 ((gn,00]) € M, f measurable. O

Exercise 5 If X = AU B where A, B € M, a function f is measurable on X iff f measurable on both A and
B.

Proof. Recall that f is measurable on A C X if f~}(B)N A € M for any set B that is measurable. Therefore
obviously f measurable on A and B. Conversely, give any measurable set M, then f~Y(M)NA e M, f~1(M)N
B € M. Then f~}(M) € M. O

Exercise 6 The supremum of an uncountable family of measurable R-valued functions on X can fail to be
measurable.

Solution. Consider any unmeasurable set Y (then it is uncountable), give f, = x, for any y € Y. Then
sup, f, = Xy is not measurable since Y is not measurable. O



Exercise 7 Suppose that for each oo € R we are given a set F, € M such that E, C Eg whenever a < f3,
UaerEs = X, and NoerEo = @. Then there is a measurable function f : X — R such that f(z) < a on E,
and f(x) > a on Ef for every a.

Solution. Take f(z) = inf{g € Q: z € E,;}. Then Vx € E,, for any rational ¢ that ¢ > a, « € E,. Therefore
f(z) < a. Similarly Vo € Ej, » € Ej for any rational numbers ¢ < a, therefore ¢ F,, x may only be in
some E, that ¢ > «, therefore f(z) > a. Note that: (1) f is R-valued since Vx € X, z € E, for some rational
q, therefore f(z) < ¢; if f(z) = —oo then x € NyerE, contradiction. (2) f is R-measurable because Va € R,
S ([, 00)) = Un f 1 ([gn, 0)) = Unfz : f(2) > g} = UnE; € M where g, is some decreasing cauthy sequence
of rationals that converges to a. O

Exercise 8 If f: R — R is monotone, then f is borel measurable.

Proof. Without loss of generality, suppose f is increasing, then f~! is also monotone increasing on Imf. Thus
f~Y([a,00)) must be some interval, therefore borel measurable. Hence f is borel measurable. O

Exercise 9 Let f:[0,1] — [0, 1] be the cantor function, and let g(z) = f(z) + «.

(a) g is a bijection from [0, 1] to [0,2], and h = g~ is continuous from [0, 2] to [0, 1].

(b) If C is the cantor set, m(g(C)) = 1.

(c) By Exercise 1.29, g(C) contains a Lebesgue nonmeasurable set A. Let B = g~1(A). Then B is Lebesgue
measurable but not Borel measurable.

Proof. (a) Obviously g is monotone increasing and continuous, thus g([0,1]) = [0, 2], g is bijective. Therefore
V (a,b) € [0,1], h=1((a, b)) = g((a,b)) = (g(a), g(b)), h is open.

(b) Recall C' = [0,1]\(UgIx). Since g is bijective and {I} is pairwise disjoint, g(C) = [0,2]\g(Uxlx) =
[0,2]\(Urg(Ix)). By the construction of f, f is constant on Ij. Thus m(g(Iy)) = m(I). Therefore

m(9(C)) = m([0,2]) = Y m(ly) = 1
k

(c) Since B = g~ 1(A) € g7 1(9(C)) = C, B must be of zero measure because it is contained in some null
sets. Since h is continuous hence borel measurable, if B is borel measurable then A = h~!(B) would be borel
measurable, contradiction. O

Exercise 10 The following implications are valid iff the measure p is complete.
(a) If f is measurable then f = g u-a.e., then g is measurable.
(b) If f,, is measurable for n € N and f,, — f p-a.e., then f is measurable.

Proof. (a) If i is complete, then g — f must be measurable since it is only non-zero on some null sets, therefore
g =g — f+ f is Lebesgue measurable. Conversely, suppose any N C E with E a null set. Then let f = xg,
g =xg\n- Then f — g = xn must be measurable. Therefore N = (f —g)~'({1}) is measurable.

(b) Since f,, is measurable for each n, lim f,, is measurable, and lim f,, = f p-a.e.. If p is complete, by (a)
f is measurable. Conversely, suppose any subset N of a null set, take f,, = 0 for each n and f = xy, then f is
measurable, N must be measurable. O

Exercise 11 Suppose that f is a function on R x R¥ such that f(z,-) is borel measurable for each z € R
and f(-,y) is continuous for each y € R*. For n € N, define f,, as follows. For i € Z let a; = i/n, and for
a; S T S 41 let
Fulzay) = flaipr, ) (x — ai) — f(ai, y) (@ — ait1)
Ai+1 — G4

Then f,, is borel measurable on R x R¥ and f,, — f pointwise; hence f is borel measurable on R x R¥. Conclude
by induction that every function on R™ that is continuous in each variable separately is Borel measurable.



Proof. Since f(x,-) : R¥ = Rand x—a; : R — R is measurable, f,(z,y) is measurable. Now show that f,, — f
pointwise. Since

= fal = |f(ay) — ﬁf(am,y)(w —a5) = flany)(@ — as)|
— L (f@y) — Fla )@ —a) — (Flasy) — @)@ — i)

Aj41 — a4

Suppose some € > 0, then there is a open neighbourhood Bs(z) such that Vo' € Bs(z), |f(x) — f(z0)| < €. Take
n large enough such that [a;, a;11] is in that neighbourhood, then

€
|f = fol £ ———|(ai1 —a;)| =€
air1 — G4

Since f, — f, f is borel measurable on R x R*. If f(z): R — R is continuous, then it is measurable. Assume
that if f : R™ — R is continuous with respect to each variable then it is measurable. Then suppose any function
g : R x R™ — R. By previous exercise g is measurable. Therefore the proof is done by induction. O

Exercise 13 Suppose {f,} C LT, f, — f pointwise, and [ f = lim [ f, < co. Then [, f = lim [}, f, forall
E € M. However, this need not be true if [ f =1lim [ f, = oc.

Proof. By Fatou’s lemma,

/ f= /fxE = /liminffan < liminf/anE :liminf/ fn
E E
Conversely, write

/f—/Ef: | f <limint chn:liminf(/f—/Ef):/f—limsup/Ef

therefore limsup [, fn < [ f < liminf [, fo, lim [, fn = [ f, the proof is done. For counter-examples, just
take f, = X[n,n+1] T X(=00,0] and E = [0, 00). O

Exercise 14 If f € L, let \(E) = [}, fdu for E € M. Then X is a measure on M, and for any g € L™,
J9dx = [ fgdu.

Proof. \(@) = 0. Suppose a collection of disjoint measurable sets {E,}, then AN(U,E,) = [ fxu, g, dp =
>ou ) fxe.du=">", AN(E,), therefore A is a measure.

Give ¢ = Y, a;x g, a simple function. Then [ ¢dX\ =Y, a;A(E;) = [ >, aixe,dp = [ fodu. Now suppose
{#n} an increasing collection of simple functions that ¢, — g. Then

/gd)\ = lim/génd)\ = lim/fqbndu: /fgdu

[
Exercise 15 If {f,} C LT, f, decreases pointwise to f, and [ f1 < oo, then [ f =1lim [ f,.
Proof. Obviously {f1 — fn} increases pointwise to {f; — f}. Therefore by MCT,
i (= 1) = [(h= 1)
hence
[i=[n-[n-n=[n-1m[tr- ) =tims,
where the last equality is because [(fi — fu) + [ fo = [ f1. O

10



Exercise 16 If f € L™ and [ f < oo, for every € > 0 there exists E € M such that u(E) < oo and
Jof>[f—e

Proof. By the definition of integration, for every e > 0, there exists a simple function ¢ that [¢ > [ f —e.
Write ¢ = >, a;xg, with the standard representation (where a; # 0 for each ¢). Let E = U; E;, then fE f>
[ ¢ > [ f—e Now show that E is of finite measure. It is obvious that

oo > /gi) > /min{ai}XE = min{a; }u(E)
therefore p(F) < oo. O

Exercise 17 Assume Fatou’s Lemma and deduce the monotone convergence theorem.

Proof. Suppose {f,} is a sequence in L™ such that f; < f;4q for all j, and f = lim,_, f,, = liminf f,,, then

by Fatou’s lemma,
/f:/liminffn < liminf/fn
Conversely,

()z/liminf(fffn)Sliminf/(fffn):hminf(/ff/fn):/fflimsup/fn
where f(f_fn):ff_ffn becauseOff(f_fn+fn):ffn""f(f_fn):ff' Thusff:hmffn O

Exercise 18 Fatou’s lemma remains valid if the hypothesis that f, € LT is replaced by the hypothesis that
fn is measurable and f,, > —g where g € LT N L*.

Proof. Obviously g, = f, + ¢ > 0. Then {g,} is a sequence in L. Therefore by Fatou’s lemma,

/hminfgn:/liminff,L+/gSliminf/fn—l—/g

therefore [liminf f,, <liminf [ f,. O

Exercise 19 Suppose {f,} C L*(n) and f,, — f uniformly.
(a) If u(X) < oo, then f € L'(p) and [ fr, — [ f.
(b) If u(X) = oo, the conclusions of (a) can fail.

Proof. (a) Since f, — f uniformly, 3N such that Vn > N and Vo € X, |f(z) — fo(z)| < 1. Let g(x)
|fnv(x)] + 1, then f, < g for each n. Since

/g:/\fN(x)|+1:/fN(x)+u(X)<oo

by DCT f € L'(p) and [ fn, — [ f.
(b) Just take f, = (1/n)X[0,n) O

Exercise 20 If f,,, g, f,g € L', f,, = f and g, — g ae., |fn| < gn, and [ g, — [g, then [ f, = [ f.

Proof. By taking real and imaginary parts, assume f,, and g, are real. Then f, +g¢g, > 0 and g,, — f,, > 0. By
Fatou’s Lemma,

[r+9) < [tmint(, + g.) < timint [ (5, + g.) = timint [ £,+ [

Jo-n< [timint(g, - ) < tmint [ (g, f) = [ g~ tmswp [ 1,

thus [ f, — [ f. O

11



Exercise 21 Suppose f,,, f € L' and f, = f a.e. Then [ |f — f,| = 0iff [|fn] = [|f].

‘/Ifl—/Ifnl =]/|f|—|fn| < [1r- sl =0

Conversely, if [|f,] = [|f], then by Exercise 20, [ f, — [ f. Thus | [ f— [ fu| = [|1f — ful = 0. O

Proof. Obviously

Exercise 22 Let u be a counting measure on N. Interpret Fatou’s lemma and the monotone and dominated
convergence theorem as statements about infinite series.

Solution. Obviously the measure of a measurable function f on (N,p)is [ f =3, f(n) =3, a,. Therefore
by Fatou’s lemma, suppose {ani} a sequence of nonnegative numbers, then ), liminf, a,; < liminf, >, ank.
By MCT, given a sequence of nonnegative numbers {an}, if any < apnt1,x for every n and k, and a,, — ay, for
every k, then lim,, >, anr, = >, ar. The DCT says that for any sequence of complex numbers {ay} such that
|ank| < |gi| for each k, and anir — ax for every k, then lim, >, anr = Y ak. O

Exercise 25 Let f(z) = 272 if 0 < # < 1, f(x) = 0 otherwise. Let {r,}$* be an enumeration of the
rationals, and set g(x) = Y77 27" f(z — rp).

(a) g € L*(m), and in particular g < cc a.e.

(b) g is discontinuous at every point and unbounded on every interval, and it remains so after any modification
on a Lebesgue null set.

(c) g% < oo a.e., but g% not integrable on any interval.

Proof. (a) Observe

/|g|:/§:f($2—nrn):i;/ﬂx_rn):i%ll < o0

where by MCT,

rn+1/t
/f(x ~Ta) = tlggo/f(x = )X (r 41/t 1) = JM (z — Tn)1/2d$ =2

t—o00
n

therefore g € L'(m), and obviously g < oo a.e.
(b) Suppose xy € R with g continuous at 5. Then obviously g(zg) < co. For any e > 0 and 0 < § < 1,
there exists r, € Q such that xg < r, < xg+d. Let &’ € (r,,zo + J) such that

g(zo) + e < %f(x’ —7y)

1
then g(a') > Q—nf(x’ — 1) > g(zg) + €. Since 0 is arbitrary, contradiction. For any interval (a,b) C R, take

1
rn € (a,b). Then for any e that is sufficiently large, g(r, + (276)2) > €. Therefore g(x) is unbounded on any
interval. If after modification ¢ is no longer unbounded on some interval, take this interval as the same interval
1
(a,b). then Je > 0 such that g(x —r,) < € for all x € (a,b), then g is modified on at least (r,,r, + (ﬁe)z)

which has a non-zero measure, contradiction.
(c) By (a) it immediately follows that g2 < oo a.e. For the second part, observe

/g2>/iwzi;/ﬁ(x_’"n)=w

where [ f2(z —r,) = oo follows the same argument as (a). O

12



Exercise 32 Suppose u(X) < co. If f and g are complex valued measurable functions on X, define
|/ — 4
p(f.9) = / T s
(:5) L+|f =gl

Then p is a metric on the space of measurable functions if we identify functions that are equal a.e., and f,, — f
w.r.t. this metric iff f,, — f in measure.

Proof. The triangle inequality is obvious since

_ 1
|f — g 1

1+[f—gl  ~ 1+If—4

is an increasing function of |f — g|. Suppose € > 0. If f,, — f in measure then for any n > 0, 3N such that
VYn>N,
w(En = {z: [fu(z) = f(2)] > €}) <n

take n = €, then

_ |fn_f‘ |fn_f| _
W)= [ T */Eg, T |fo g < AR FulX)e=ell +u(X)) =0

Conversely suppose p(fn, f) — 0. Then V7 > 0, 3N such that if n > N, p(f., f) <n. Consequently,

€ |fn — [l
1+6M(En)§/En1+|fn_f|§77

t 1
therefore Vit > 0, take n = %, then I N such that u(E,) <n te_ t. O
€ €

Exercise 33 If f, > 0 and f,, — f in measure, then [ f <liminf [ f,.

Proof. Recall that given a sequence of real numbers {a, }, there exist a subsequence {a,, } such that a,, — L
for any liminfa, < L < limsupa,. Then there is a subsequence f fn, such that lim f fn, = liminf f fn-
Obviously fn, — [ in measure, therefore there is a subsequence fy, that converges to f a.e. Therefore by

Fatou’s Lemma,
/f = /limjnffnki < limAinf/fnki = liin/fnk = liminf/fn

Exercise 34 Suppose |f,| < g € L' and f,, — f in measure,

(1) [ f =lim [ fn,
(2) fn — fin L.

Proof. (a) Since f,, — f in measure iff Re(f,,) — f in measure and Im(f,,) — f in measure, assume f,, and f
are real-valued. Since f, € L' and there is a subsequence of f,, that converges to f a.e., f € L'. Since g + f,
and g — f, are non-negative functions, the previous exercise implies that

/g+/f:/liminf(g—|—fn) gliminf/(g+fn) :/g—l—liminf/fn
[o= [ 1= [riminttg— ) <timint [tg— )= [g-tmsup [ 1,

therefore [ f =lim [ f,.
(b) Obviously | f,, — f| converges to 0 in measure. Since |f,, — f| < |fal+]f] < 2|g| € LY, by (a), lim [ |fr—f] =
0, fn — fin L. 0
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Exercise 35 f, — f in measure iff for every € > 0 there exist N € N such that p({z : |fn(2) — f(z)] > €}) <€
for n > N.

Proof. For any €, > 0, suppose 7 < €, then 3N such that Vn > N, u({z : |fo(z) — f(z)| > €}) < p({z :
|frn(z) = f(x)| > n}) <n. The reverse direction is trivial. O

Exercise 36 If u(E,) < oo for n € N and yg, — f € L', then f is a.e. equal to the characteristic function
of a measurable set.

Proof. Since yg, — f in L', there exists a subsequence XE,, — [ a.e. Therefore there is a measurable
function g such that g = f a.e. Since f and g can only take values 0 or 1, f = x4-141} a.e. O

Exercise 37 Suppose that f, and f are measurable compelx-valued functions and ¢ : C — C.

(a) If ¢ is continuous and f, — f a.e., then ¢o f, = do f a.e.

(b) If ¢ is uniformly continuous and f,, — f uniformly, almost uniformly, or in measure, then ¢o f,, — ¢o f,
uniformly, almost uniformly, or in measure, respectively.

(c) There are counterexamples when the continuity assumptions on ¢ are not satisfied.

Proof. (a) Let € X be a point where f,, converges to f. Then

lim ¢(fn()) = ¢( lim_fo(2)) = ¢(f(2))

n— oo

so ¢pof, = ¢ofae.

(b) Suppose f, — f uniformly, Ve > 0, 3N such that |f, — f| < € for n > N. Since ¢ is also uniformly
continuous, Ve > 0, 3§ > 0 such that |¢(f,) —d(f)| < € for any |f,, — f| < d. Therefore ¢o f,, — ¢o f uniformly.
The same argument applys for the almost uniform case. If f,, — f in measure, since ¢ is uniformly continuous,

dn,
{z:]o(fu(2)) — o(f(@))] <€} C{z:|fulx) = f(z)] <n}

the proof is done since p({z : |fn(z) — f(z)] <n}) =0
(c) Give f, = e~ ", f, — f uniformly, suppose ¢ = Inz, then ¢ o f,, = —n, which is anywhere divergent. [

Exercise 38 Suppose f, — f in measure and g, — g in measure.
(a) fn+ gn — f + ¢ in measure.
(b) fngn — fg in measure if u(X) < oo, but not necessarily if ;(X) = oo.

Proof. (a) Let € > 0, then 3 N¢, N, such that pu({z : |f, — f| > €/2}) < €/2 for n > Ny and likewise for g.
When n is large enough, since |(fn, + gn) — (f + 9)| < |fn — f] + 190 — g1,

{z:|(faton) = (Frglze C{o:|fo—Ffl=€/2yU{x: g0 — 9| = €/2}

therefore p({x : |(fn+9gn) — (f +9)| > €}) = 0.
(b) Likewise define €, Ny, Ny. Since |frngn — f9] < |fn — fllgn — g9l + |fllgn — gl + |9l fn — ],

{z:1fg = fagnl > €} C{a [ fn = fllgn — gl > ¢/3}Ufz: [fo = fllgl > €/3} U{z : |fllgn — gl > €/3}

It is obvious that p({z : |fn — fllgn — g| > €/3}) — 0. To show p({z : |f|lgn — g| > €/3}) — 0, claim that for
any n > 0, 3N € N such that p({z : |f| > N}) <n. Let E, = {x : |f| > n}, then E,, is a decreasing sequence
of sets. Since p(X) < 0o, and | f| can only take on finite values which implies N, E,, = &, by convergence from
below, u(E,) — 0, which verifies the claim. Since

{1 fllgn — gl > €/3} C{z: [f| > N} U{z:[gn — g < €¢/3N}

for each N, there is

p{z 1 fn = fllgn — 9l > €/3}) <p({z: |fI > N}) + p({z < [gn — gl > €/3N})

therefore Vv > 0, take N and n such that u({z : |f| > N}) < v/2 and p({z : |gn — g| > €¢/3N} < v/2, it can
be seen that p({z : |f||gn — 9| > €/3}) — 0, similarly u({z : |g||frn — f| > €/3}) — 0, the proof is done. O
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Exercise 39 If f, — f almost uniformly, then f, — f a.e. and in measure.

Proof. Since f, — f almost uniformly, Vn € N, 3F,, C X such that u(F,) < 1/n and f,, — f uniformly
on E¢. Then obviously £ = N, E, has zero measure by continuity from below, and f, — f on E°. Therefore

fn— [ ae.
Ve > 0, take E C X such that f,, — f uniformly on E° and u(F) < e. Then V7 > 0, 3N such that if n > N

{z:]fa—fl>n}CE
therefore f,, — f in measure. O
Exercise 40 In Egoroff’s theorem, the hypothesis “u(X) < c0” can be replaced by “|f,| < g for all n, where
g€ L' ()
Proof. Without loss of generality, assume f, — f for all x € X. For k,n € N, let
En(k)= U Az 1fm = F1 2 K71
m=n

then for fixed k, E,, is a decreasing sequence. For z € X, if z € F;(k), then Im such that |f,, — f| > 1/k.
Therefore 1/k < |fm + f| < 2g, [1/2kxg, &) = 1/2kp(E1(k)) < [g. Since g € L', u(Ey(k)) < oo. Therefore
by continuity from below, u(E,(k)) — 0. Given ¢ > 0 and k € N, choose nj so large that u(E,, (k)) < e27F,
and let F = UgE,, (k). Then u(E) <e, and |f, — f| < 1/k for n > ny, and = € E°. O

Exercise 41 1If ;i is o-finite and f,, — f a.e., there exist measurable E1, E5, --- C X such that p((UPE;)¢) =0
and f, — f uniformly on each Ej.

Proof. Suppose p(X) < oo, then by Egoroff’s theorem, for each k& € N, 3 Ej such that p(Ef) < 1/k and
fn — f uniformly on Ej. Let F,, = U7 Ey, then FY is a decreasing sequence, therefore

{(3e))(07)) )

and f, — f uniformly on each E;.
Since y is o-finite, X = X; U X+ each with finite measure. Therefore for each i, there exists { £} } such
that p(X;\(UxEL)) =0 and f, — f uniformly on each E}. Since

?

o((us) ) <e(U(xya)) -0
ik k
{Ej}} gives the desired sequence. O

Exercise 42 Let p be the counting measure on N. Then f, — f in measure iff f,, — f uniformly.

Proof. Suppose f, — f in measure. Then Ve > 0, 3N € N such that if n > N,

,u({x:|fn_f|>€})<1/2

therefore |f, — f| < € for each & € N, hence f,, — f uniformly. Conversely, if Ve > 0, 3N € N such that if
n> N, |f, — f| <efor each z € N, then u({z : |f, — f| > €}) =0. O
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Exercise 44 If f : [a,b] — C is Lebesgue measurable and € > 0, there is a compact set E C [a,b] such that
u(E°) < € and f|g is continuous.

Proof. For each n € N, let E,, = f~1(B,(0)). Then

llmM(En) = M(UnEn) = M([a" b])

therefore 3m € N such that p([a,b]) — p(En) < €/3. Then |fxg,,| < mxpy, thus g € L'. Hence by
theorem 2.26 there is a sequence of continuous functions g; = fxg,,. By corollary 2.32, there is a subsequence
9i, — fxg,, a.c. By Egoroff’s theorem, there exists F' C E,, such that g;, — fxg,, uniformly on E,,\F and
w(F) < ¢/3. By theorem 1.18, there exists a compact set F such that E C E,,\F and u(E) > p(E,\F) + ¢/3.
Therefore fxg is continuous, and

w(E) = p(Er,) + m(Ep\E) < €/3 4 p(Em\F) + p(En\F\E) < €
O
Exercise 45 If (X, M) is a measurable space for j = 1,2, 3, then ®i’ M; = (M ® M3) ® M3. Moreover,
if p; is a o-finite measure on (X;, M;), then py X o X pig = (p1 X p2) X s

Proof. (M; ® M3) @ M3 is generated by € = {(E1 X E2) X E5 : E; € M;}. By the natural identification, one
takes (X1 x X2) x X3 = X1 X Xg x X3. Thus & = {Ey x Es x E5: E; € M;}, which generates ®? M.
Suppose 1, fi2, (13 are o-finite. Then on the algebra A of rectangles,

(11 X p2) X p3((Er X Ea) X E3) = pu(E1)po(E2)ps(Es) = pn X po X ps(Er X By x Es)

since (1 X p2) X ps and p1 X po X ug are both o-finite measures and they agree on A, they are equal by the
uniqueness assertion in theorem 1.14. O

Exercise 46 Let X =Y =[0,1], M =N = Bo,1), v is the Lebesgue measure, and v is the counting measure.
If D = {(z,z): x €0,1]} is the diagonal in X x Y, then [ [ xpdudv, [ [ xpdvdy, and [ xpd(p x v) are all

//XDdudu:/[/X%du] Q=0
//Xpdz/duz/[/x%du}du:/duzl

/XDd(M X V) = inf{z w(A;))v(Bj) : D C Uj(A; x Bj)where A; x B; are disjoint rectangles}
n=1

Proof. Obviously,

By definition,

Suppose such sequence A; x B; that covers D. Then [0,1] C U;(A; N Bj). Therefore (A, N By) > 0 for some
n. Then pu(A,) > 0, and v(B,,) = co. Therefore the integral is co. O

Exercise 48 Let X =Y =N, M =N = P(N), x and v are the counting measure. Define f(m,n) = 1 if
m =n and f(m,n) = —1if m =n+1, and f(m,n) = 0 otherwise. Then [ |f|d(p x v) = oo, and [ [ fdudv
and [ [ fdvdu exist and are unequal.

Proof. o e
/[/fydu} dy:;;ﬂn’])_o
/[/fxdu] du—jiif(nd)—l

Let E1 = {(n,n) :n € N} and E2 = {(n,n+ 1) : n € N}, then | f(z)| = 1 and non-zero iff x € E; U Ey. Thus

/Ifld(u % 1) = (% ) (Ey) + (i x v)(Ez) = o0

since F; and F5 are not finite. O
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Exercise 49 Prove Theorem 2.39 by using Theorem 2.37 and Proposition 2.12 together with the following
lemmas.

(a) f Ee M®N and pu x v(E) =0, then v(E,) = p(EY) = 0 for a.e. z and y.

(b) If f is L-measurable and f = 0 A-a.e., then f, and fY are integrable for a.e. z and y, and [ fydv =
J f¥dp =0 for a.e. z and y.

Proof. (a) Since p and v are o-finite,

0= (ux)(B) = [ W(EN) = [vE)dnlz)

therefore v(E,) = p(EY) =0 a.e. z and y.
(b) Let E C X x Y be the null set such that f(z,y) = 0 for all (z,y) ¢ E. Since X is the completion of
1 X v, there is a set ' € M ® N such that E C E’ and (u x v)(E") = 0. Therefore

0= (ux)(E) = [ uEM)dvty) = [ v(E)au(o)

thus v(E!) = 0 and u(E'Y) = 0 a.e. Since p and v are complete, p(E;) = 0 and v(EY) = 0 a.e. Therefore
f= =0and f¥ =0 a.e. Hence f, and fY are measurable and integrable a.e. with [ f,dv = [ f¥dp = 0.

Now assume f is L-measurable. There exists an (M ® N)-measurable function g such that f = g M-a.e. If
f >0, then g > 0 a.e. Without the loss of generality assume g > 0, by Tonelli’s theorem, = +— [ g,dv and
y — [ g¥dp are non-negative and (M ® N)-measurable with

/gd)\ // (2, y)dp(z)dv(y // (z,y)dv(y)du(z) ()

Since g = f Ma.e., if f € L'(\) then g € L'(u x v). By Fubini’s theorem, this implies that g, € L'(v),
gy € L*(p), > [ gpdv € L*(p) and y — g,d(p) € L' (v) a.e. x and y, and (*) holds.

Apply (b) to f — g, therefore f, € L'(v) and fY € L'(u) a.e. x and y provided that f € L'(\). In either
cases, [ g,dv = [ fydv a.e. x, therefore [ f,dv is measurable and the same holds for y. Because f = g a.e.,

/fd/\:/gdA
// (2, ) dp(z)dv(y // (2, ) dw () dp()
- [ [ tepan@ave) = [ [ s pwmine)

Exercise 50 Suppose (X, M, 1) is a o-finite measure space and f € LT(X). Let

Gy ={(z,y) € X x[0,00] : y < f(2)}

then Gy is M x Bg-measurable and p x m(Gy) = [ fdu; the same is also true if the inequality y < f(z) in the
definition of Gy is replaced by y < f(x).

Elll'oof. Since g = (2,y) — (f(z) —y) = ((s5,t) = (s—1)) o ((z,y) — (f(),9)), Gf = g~ ([0, 00)) is measurable.

(1 x m)(Gy) /m (Gy)e)dp(z /fd#
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Exercise 51 Let (X, M, ) and (Y, N,v) be arbitrary measure spaces.

(a) If f : X — C is M-measurable, g : ¥ — C is N-measurable, and h(z,y) = f(z)g(y), then h is
M @ N-measurable.

(b) If f € L*(u) and g € L*(v), then h € L*(u x v) and [ hd(u x v) = ([ fdu)([ gdv)

Proof. (a) Since f(x) and g(y) are M ® N-measurable, h = fg is also measurable.
(b) Suppose f > 0 and g > 0. Then there exist increasing sequences ¢,, and v, of non-negative simple

functions that converges to f and g respectively. Then ¢,v, — h pointwise. Suppose ¢, = Ef iXA;,
!
Y, = Zj bjxB,. Then

/(i)n?ﬁn: Zaz (1 x v)(Ai x By) (Zazﬂ ) zl:bj’/(Bj) :/¢n~/1/)n

therefore it is true for positive functions. For any complex function g, just decompose it into u = Reg, v = Img

then u™, u=, v+, v~=. Apply the above formula repeatedly, the proof is complete. O

Exercise 52 The Fubini-Tonelli theorem is valid when (X, M, u) is an arbitrary measure space and Y is a
countable sets, N = P(Y), and v is counting measure on Y.

Proof. If f € L*T(X x Y), since v is the counting measure, identify it with N. Then

[ [t~ [ (i fm)) = [ [ o =3 ([ o) - [ o

therefore Fubini-Tonelli theorem is true. O

3 Chapter 3: Signed Measures and Differentiation

Exercise 1 Prove Proposition 3.1.

Proof. Suppose {E;} an increasing sequence, F; = E;\ U™ E;, since u(E;) = Y opeq (Fr),

WU E;) = p(U; F Zu = lim p(E;)

Suppose {E;} an decreasing sequence, since p(E1) < oo,

p(N;Ej) = p(EW\(Ex\ N Ej)) = p(Er) — p(U;(E1\Ej)) = p(Er) — lim(p(Er) — p(Ej)) = lim p(E;)

Exercise 3 Let v be a signed measure on (X, M).
(a) L*(v) = L'(|v])
(b) If f € L' (v |ffdl/|<f|f\d|V|
(c) If Ee M, |1/|( = sup{| [ fdv|: [f] <1}.

Proof. (a) Let ¢ € L' be a simple function, and write ¢ = > | a;x&,, then

[ ol =S alvl(E) = Y av* (B + v (B) = [ odvt + [ o
=1 i=1

since for any f € L'(v), f € L*(v*) N LY(v™), thus

[t ={ [ oain 6 € 1+ swpie,s <151} = [1s1a0 + [ 11007 <o

hence L'(v) € L'(|v|). The converse is obviously true.
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(b)

‘ [ g = ‘ [ g~ [ | = ‘ [sar = [ | < [inao+ [is1a0 = [1naw

(c) Suppose g = xB — x4, where A and B are the hahn decomposition of v. Then

/E gdv = / (x5 - x4)xpdv = / xpnedrt + / xansv~ = vH(E) + v~ (E) = |v|(E)

If |v|(E) = oo, the proof is done. Otherwise assume that |v|(E) < oo, and let f be a measurable function with
|f| < 1. Then | [, fdv| < [,|fldlv| < |v|(E). Therefore

WI(E) < {I/EdeI 0 gl} < W(B)

the proof is complete. O

Exercise 4 If v is a signed measure and ), are positive measures such that v = A — g, then A > v and
w=v.

Proof. Suppose hahn decomposition A, B for v, then VE € M,
ME)>MNENB)>v(ENB)=v"(ENB) >v(E)

the same argument goes for > v~ O

Exercise 5 If vy, vy are signed measures that both omit the value 400 or —oo, then |v; + vo| < |v1| + |2

Proof. Obviously v, + vy is still a signed measure, and vy + vo = (vf + vy ) — (v; + vy ). By exercise 4,
(v +v) > (1 +v2)t and (v; +vy) > (11 + v2) . Therefore
1wl = (4 v2) T+ 0e)” S H03) + (0 +1y) = ] + [
O

Exercise 6 Suppose v(E) = [ g Jdp where p1 is a positive measure and f is an extended p-integrable function.
Describe the Hahn decompositions of v and the positive, negative, and total variations of v in terms of f and

.
Solution. P = {z: f(z) >0}, N ={z: f(z) <0}. v* = [, p fdv,v™ = — [\ fdv, |[v|=vt 4+ 0. O

Exercise 7 Suppose that v is a signed measure on (X, M) and E € M.
(a) vT(E) =sup{v(F): FE M,F C E} and v~ (E) = —inf{v(F): F € M,F C E}.
(b) V[(E) =sup{>_] [V(E;)| : n € N, Ey,- -+ , E, are disjoint, and U} E; = E'}.

Proof. (a) Let A and B be the hahn decomposition. Then
vi(E)=vT(ENP)<sup{v(F): F C E}

moreover, if F' C E, then

therefore
vT(E) =sup{v(F): F C E}

the similar argument works for v~ (E).
(b) Denote RHS with ¢.
WI(E) = (BN A)| + (BN B)| <t

moreover,
n

DB <D W (E) + v (E)) = v (E) + v (E) = [v|(E)

1
the proof is complete. O
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Exercise 8 v < piff [v| < piff vt < pand v~ < p.

Proof. Suppose u(E) =0, then |[v|(E) =0iff v (E) =v~(E) =0. If v < p, since VF € M that is contained
in B, v(F) = pu(F) =0, by exercise 2, |v|(E) = 0. The converse is trivial. O

Exercise 9 Suppose {v;} is a sequence of positive measures. If v; L u for all j, then Y [“v; L p; and if
vj < p for all j, then > " v; < p.

Proof. The second part is trivial by countable additivity. For the first part, denote E; the v;-null set and Ef
the p-null set, then N;E; is Y 1° vj-null and (N, E;)¢ is p-null. O

Exercise 10 Theorem 3.5 may fail when v is not finite.

Solution. Take dv(x) = dx/x and du(x) = dz on (0,1). Then obviously v < u, but consider E,, = (0,1/n),
obviously v(E,) > 1. O

Exercise 11 Let p be a positive measure. A collection of functions {fa}aca C L'(p) is called uniformly
integrable if for every e > 0 there exists § > 0 such that | [, fadp| < € for all & € A whenever pu(E) < 6.

(a) Any finite subset of L!(p) is uniformly integrable.

(b) If {fn} is a sequence in L'(u) that converges in the L' metric to f € L'(u), then {f,} is uniformly
integrable.

Proof. (a) Since f € L'(u), the finite signed measure E fE fdu is absolutely continuous with respect to p.
Therefore for any € > 0, 3, such that | [}, fodu| < € when p(E) < dq. Just take 6 = min{d,} > 0.

(b) For any € > 0, there exists N € N such that [ |f, — fldu < ¢/2 for any n > N. Let I ={0,1,2,--- ,N}
(with fo = f), then {f;};cs is uniformly integrable. Therefore 36 > 0 such that |fE fidp| < €/2 for any i € I
with u(F) < §. Then for i € N\I,

/fndu‘ '/ du+/fdu‘ ‘/ du‘ ‘/Efd,u‘ge

O

Exercise 12 For j = 1,2, let p;,v; be o-finite measures on (X;, M;) such that v; < p;. Then vy x vy <

g1 X iz, and
dVl

dpiy

dl/2
dpiz

d(l/l X 1/2)

d(py X pi2) (@1,22) =

—— (1) 7= (2)

Proof. If (u1 x p2)(E) =0, then
0= [ a(E s )

therefore po(E®1) is 1 a.e. and hence vo(E*1) is vq a.e., then
(Vl X VQ)(E) = /VQ(Eml)dyl(ml) =0
The second part is verified by
(11 x va)( /fXEd g1 X fi2) / {/ fXEdHQ(xQ):| dp1 (1)
z dV2
= VQ(E l)dul(:zjl) = d 2(1’2)(1/12(.’]3‘2) dlll(itl)

:/ [/ XEZZI( )ZZZ (x2)dﬂ2(x2)] dpn (1)
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Exercise 13 Let X = [0, 1], M = By 1), m is the Lebesgue measure, and p is the counting measure on M.
(a) m < p but dm # fdu for any f.
(b) p has no Lebesgue decomposition with respect to m.

Proof. (a) The first part is trivial. Suppose there exists such f, then m({z}) = f(x) = 0, therefore f = 0 and

X) = / fdu=0
X
contradiction.

(b) Suppose that u has a Lebesgue decomposition A + p with respect to m, with A L m and p < m. Then
p({z}) =0, and A({z}) = 1. Suppose X = AU B the Lebesgue decomposition with A\(A) = m(B) = 0. Then
A = @, then m(B) = m(X) = 1, contradiction. O

Exercise 16 Suppose that u, v are o-finite measures on (X, M) with v < u, and let A = p+v. If f =dv/d),
then 0 < f <1 v-a.e. and dv/dp = f/(1 — f).

Proof. Let E, = {z: f(z) < —1/n}. Therefore
—n"I\E / fd\=v(E,) >0

and hence u(E,) < A(E,) = 0. It follows that p(U°E,) =0, so f > 0 p-a.e. Set F = {x: f(x) > 1}. Since v
is o-finite, there is a sequence F;, of subsets of F' which cover F' such that v(F,) < co for each n. Because

= [ faxz [ 1= A = (B +u(B)
F, F,
u(F,) =0. Thus u(F) =0 and f < 1 p-a.e. Therefore f,1 — f € L", so for each E € M,
/ (1= f)d\+v(E)= / 1d\ = ME) = p(E) + v(E)
E E

Thus [,(1 — f)dA = p(E) for any v(E) < oo. This result extends to all £ € M since v is o-finite. Thus
dp/dX\ = (1 — f). Therefore
dv. _dvdx  f

dp  dxdv  1—f
O

Exercise 17 Let (X, M, i) be a finite measure space, A" a sub-o-algebra of M, and v = u|N. If f € L(p),
there exists g € L' (v) such that fE fdp = [ gdv for all E € N3 if ¢’ is another such function then g = ¢’ v-a.e.

Proof. Define A on N by \(E fE fdu, since p < v, the rest is obvious by the Radon-Nikodym theorem. [J

Exercise 18 Prove Proposition 3.13c.

[ rar|=| [ riam| < [1n1an
J1stav= [111gau< [1sglau= [ 171ap)

LY(|v]) € LY(v). Conversely, suppose f € L'(v), let v = v, + v; where v, and v; are real and imaginaty part of
v, then f € L*(|vy| + |vi]). Therefore

/ﬁwws/mwm+wwgm

which concludes L(|v|) € L!(v). O

Proof. The second part is obvious:

Suppose dv = gdu. Since
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Exercise 19 If v, u are complex measures and \ is a positive measure, then v L p iff |v| L |u] and v < X iff
lv] < A

Proof. Suppose p = |v.| + |vs| + || + |ps], and dv = fidp, du = fodp. If v L u, suppose the corresponding
null sets be P and N. Obviously v is null on P iff |v] is null on P, similarly for p. For the second part, suppose
AME) =0, if v(E) = 0, then for any A C F that is measurable,

AA) =0 = /A fudp

therefore
[ 1ilap = 1vi(E) =0
E

which completes the proof. O

Exercise 20 If v is a complex measure on (X, M) and v(X) = |[v|(X), then v = |v|.
Proof. Suppose dv = fdu. Then for any measurable set £ C X,
v(E) +v(E) = [V|[(E) + [v[(E°)

[ tan [ gan= [ ilans [ Anan [ g=1mde= [ 1= i

Let f = f. 4+ if;, where f, and f; are real functions. Then

[~ 1tani [ fan= [ a51-foau—i [ s

by comparing the real part and since f, < |f],

/E(fr—Ifl)duz/Ec(\fl—f,«)duzo

therefore

therefore | f| = f, p-a.e. Thus
v|(E) = fldu = fdu =v(E

Exercise 21 Let v be a complex measure on (X, M). If E € M, define
n n
w1 (E) = sup {Z [v(Ej)|:n €N, Ey,--- , E, disjoint, £ = UE]} )
1 1

uo(E) = sup {Z |[v(Ej)| :n €N, Ey,--- disjoint, E = UEJ} ,
1 1

p3(E) =Sup{’/Efdu’ Sl < 1}-

Then py = pg = pz = [v|.

Proof. It is obvious that p1 < ps. To see that ps < ug, let

=

k=

obviously |f] < 1. Suppose a € {r,i} and b € {+,—} then 1 € L*(?). Therefore by DCT,

b _ lim - v(Ey) b= - v(Ey) b
/fdya _nl_ﬂ)o/; |V(Ek)|XEkd a _; |V(Ek)| a(Ek)
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It follows that

/fdu—/fdur—kz/fdul /fdy /fdu —H/fdu —z/fdu

=S e EJ =

k=1

Now show that us = |v|. Let f = dv/d|v|. By prop 3.13,

/f@—/fMM I(E) < () < | [ 1

= [v(B)| < VI(E)

It remains to show that pz(E) < u1(F). Suppose |f| < 1, then there exists a increasing sequence ¢y of simple
functions which converges pointwise to f. Let

ng
bk =Y XL,

j=1

be the standard representation of ¢,. By DCT,

ng
/ fdz/s = klim chjuZ(Ekj NE)
E — 00 i=1

hence
ng
/E fdv = kl;ngoj;ckju(Ekj NE)
thus
ng s
/Efdu = lim ;ckjy(Ekj NE)| < klllﬁo; V(B N E)| < i (E)

Exercise 22 If f € L}*(R"), f # 0, there exist C, R > 0 such that H f(x) > C|z|~" for |z| > R.

Proof. If || f|| > 0, then there exists R € (0, 00) such that fBR(O) |fldm > 0. If z € R™\Bg(0), then Br(0) C
Byy(z). Therefore

Hf(x) = Agja| fI(2) = |[fldm = Cla|™

B2 ),
= |x|mm(B2(0)) Br(0)
If « € (0,C/2R") and R < |z| < (C/a)"/", then Hf(z) > o and

m({z : Hf(x) > a}) > m(Bc/ay/m) — m(Br(0)) > Cm(B1(0))/2a

Exercise 23 A useful variant of the Hardy-Littlewood maximal function is

H f(zx) = sup{m(lB)/B |f(y)|dy : B is a ball and = € B}

Show that Hf < H*f <2"H f.

Proof. It is clear that H f(x) < H*f(x). For the other inequality, suppose = € B,.(y), then B,(y) C Ba(z),
by writing down definitions it is easy to see the inequality is true. O
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Exercise 24 If f € L} . and f is continuous at z, then z is in the Lebesgue set of f.

Proof. Since f is continuous at x, Ve > 0, there exists » > 0 such that |f(y) — f(z)| < € for any y € B,(z).
Therefore

1 1
—_— - d —_— edy =€
m(B(r2)) /B@,@ ) = F@ldy < ) /BW) d
therefore lim, o A,|f(y) — f(x)| = 0. O

Exercise 25 If F is a Borel set in R™, the density Dg(x) of E at x is defined as

. m(ENB(rx))
De(@) =l = ma )

whenever the limit exists.

(a) Show that Dg(x) =1 for a.e. z € F and Dg(x) =0 for a.e. z € E°.

(b) Find examples of E and z such that Dg(x) is a given number o € (0, 1) or such that Dg(x) does not
exist.

Proof. (a) Define u(A) = m(ENA). Then u = xygdm. Suppose m(A) < oo, for any € > 0, there exists an open
set U such that m(U) < m(A)+e. Therefore u(U) < u(A)+e. Now for any A that is measurable, take Ay such
that m(Ay) < oo and A = Ui Ag. Then for each k there exists an open set Uy, such that u(Uy) < pu(Ag) + 2 "e.
Thus u(UpUk\A) < €, which implies that u is regular. So for a.e. z € R™,

. (B (2))
Dp(z) = Th_{% m =xe(7)

(b) Suppose E = {x : 2; > 0} and = 0. Then Dg(x) =2"". O

Exercise 26 If A\ and u are positive, mutually singular Borel measures on R™ and A + p is regular, then so
are A and p.

Proof. Condition (i) holds trivially. For condition (ii), since g L A, suppose P is p-null and P° is A-null.
Since A + p is regular, for any E C P that is Borel measurable, there exists an open set U such that \(U) <
AU) + w(U) < A(E) + € for any € > 0, therefore A is regular. The same goes for p. O

Exercise 27 Verify Example 3.25.

Proof. (a) is obvious since lim,_, o Tr(x) = F(c0) — F(—00) < 0.
(b) If F,G € BV, then

n

> laF(x;) +bG(x) — aF(z5-1) = bG(x;1)| <D (alF(wy) = Fwj-1)| + b F(w;) = F(x;-1)])
1 1

therefore Ty pioa(2) < aTr(x) + bTe(x), the rest is obvious.
(c) Since F is differentiable on R and F’ is bounded, by the mean value theorem,

n 1
S NP () = Fzi1)| = Y |F' ()|l — 51| < [M]]b—a
1 n

therefore the variation on [a, b] is bounded.
(d) sinz € BV ([a,b]) by (c). To see sinz & BV, just take x; = —m/2 + 2mj.
(e) Just take x; = 1/(mw/2 + 27j). O
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Exercise 30 Construct an increasing function on R whose set of discontinuities is Q.

Proof. Enumerate rational numbers Q = {¢;}. Define f := ZiQ*iX(qim). Obviously f(z) < f(y) if x < y.
Suppose € > 0 and take N such that 2= < e. There exists § > 0 such that (z — 6, 2) U (z + §) does not contain
qi, - ,4N- Ify € (:E—(s,a:), then

f@)=fly)=fla)— Y. 27> flx)—e

y<gqi<z

therefore f is left continuous. If y € (z,x + J) then

F@) < f@) = fl)+ Y 2

<q;<y

if x € Q, by the same argument f is right continuous. If x € Q, say x = ¢, then
fl@)+27" < fly) < flz) +2" +e

which is not continuous. O
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