Real Analysis (Folland) Exercises

An Nan

December 19, 2022

Contents

1	Chapter 1: Measures	1
2	Chapter 2: Integration	8
3	Chapter 3: Signed Measures and Differentiation	18

1 Chapter 1: Measures

Exercise 2 Show that $\mathcal{B}_{\mathbb{R}}$ is generated by each of the following:

- (a) the open intervals $\mathcal{E}_1 = \{(a, b) : a < b\},\$
- (b) the closed intervals $\mathcal{E}_2 = \{[a, b] : a < b\},\$
- (c) the half-open intervals $\mathcal{E}_3 = \{(a, b] : a < b)\}$ or $\epsilon_3 = \{(a, b] : a < b)\}$,
- (d) the open rays $\mathcal{E}_5 = \{(a, \infty) : a \in \mathbb{R}\}$ or $\mathcal{E}_6 = \{(-\infty, a) : a \in \mathbb{R}\},\$

(e) the closed rays $\mathcal{E}_7 = \{[a, \infty) | a \in \mathbb{R}\}$ or $\mathcal{E}_8 = \{(-\infty, a] : a \in \mathbb{R}\}.$

Proof. Recall lemma 1.1, which states if $\mathcal{E} \subset \mathcal{M}(\mathcal{F})$, then $\mathcal{M}(\mathcal{E}) \subset \mathcal{M}(\mathcal{F})$. It is easy to observe $\mathcal{E}_i \subset \mathcal{B}_{\mathbb{R}}$, therefore $\mathcal{M}(\mathcal{E}_i) \subset \mathcal{B}_{\mathbb{R}}$.

(a) Since every open set can be written as a countable union of intervals, denote \mathcal{O} as the set of all open sets, then $\mathcal{O} \subset \mathcal{M}(\mathcal{E}_1)$, $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_1)$. Hence $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{E}_1)$.

(b) Attempt to show $\mathcal{E}_1 \subset \mathcal{M}(\mathcal{E}_2)$. Apparently $(a,b) = \bigcup_{n=1}^{\infty} [a+1/n, b-1/n]$.

(c) $\mathcal{E}_1 \subset \mathcal{M}(\mathcal{E}_3)$ since $(a,b) = \bigcup_{n=1}^{\infty} (a,b-1/n]$. The same goes for \mathcal{E}_4 .

(d) $\mathcal{E}_3 \subset \mathcal{M}(\mathcal{E}_5)$ since $(a, b] = (a, \infty) \cap ((b, \infty))^c$. The same argument goes for \mathcal{E}_6 .

- (e) $\mathcal{E}_4 \subset \mathcal{M}(\mathcal{E}_7)$ since $[a, b) = [a, \infty] \cap ([b, \infty))^c$.
- Therefore $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{E}_i)$.

Exercise 4 An algebra \mathcal{A} is a σ -algebra iff \mathcal{A} is closed under countable increasing unions.

Proof. If \mathcal{A} is closed under countable increasing unions, for any countable collection of sets $\{F_j\}$ in \mathcal{A} , let $E_1 = F_1, E_2 = E_1 \cup F_2, E_n = E_{n-1} \cup F_n$, then $\{E_j\}$ is an increasing sequence of sets, therefore $\bigcup_{n=1}^{\infty} E_n = \bigcup_{j=1}^{\infty} F_j \in \mathcal{A}$. Therefore \mathcal{A} is a σ -algebra. The reverse is trivial.

Exercise 5 If \mathcal{M} is the σ -algebra generated by \mathcal{E} , then \mathcal{M} is the union of σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} .

Proof. Let A be the index set of all countable subsets of \mathcal{E} . First claim that $\mathcal{B} = \bigcup_{\alpha \in A} \mathcal{M}(\mathcal{F}_{\alpha})$ is a σ -algebra. $\forall E \in \mathcal{B}, E \in \mathcal{M}(\mathcal{F}_{\alpha})$, therefore $E^c \in \mathcal{B}$. Given a countable collection of sets $\{E_j\}$ in \mathcal{B} , since $E_j \in \mathcal{M}(\mathcal{F}_{\alpha})$, E_j must be in at least one $\mathcal{M}(\mathcal{F}_j)$. Let $\mathcal{H} = \bigcup_{j=1}^{\infty} \mathcal{F}_j$, consider $\mathcal{M}(\mathcal{H})$. Obviously $\{E_j\} \in \mathcal{M}(\mathcal{H})$, therefore $\bigcup_{j=1}^{\infty} E_j \in \mathcal{M}(\mathcal{H})$. Since \mathcal{H} is also a countable subset of $\mathcal{E}, \mathcal{M}(\mathcal{H}) \subset \mathcal{B}$. Therefore \mathcal{B} is indeed a σ -algebra.

It is straightforward that $\mathcal{E} \subset \mathcal{B}$. For the reverse, $\forall E \in \mathcal{B}$, E is in some σ -algebra generated by \mathcal{F}_{α} , therefore $E \in \mathcal{M}$. Thus $\mathcal{M} = \mathcal{B}$.

Exercise 6 Suppose that (X, M, μ) is a measure space. Let $\mathcal{N} = \{N \in M : \mu(N) = 0\}$ and $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{M}, F \subset N \in \mathcal{N}\}$. Then $\overline{\mathcal{M}}$ is a σ -algebra, and there is a unique extension $\overline{\mu}$ of μ to a complete measure on $\overline{\mathcal{M}}$.

Proof. Apparently $\overline{\mathcal{M}}$ is closed under countable unions. For any $E \in \mathcal{M}, F \subset N \in \mathcal{N}$, without the loss of generality assume $E \cap N = \emptyset$ (otherwise replace N, F with $N \setminus E$ and $F \setminus E$). Then $E \cup F = (E \cup N) \cap (N^c \cup F)$, $(E \cup F)^c = (E \cup N)^c \cup (N \cap F^c)^c \in \overline{\mathcal{M}}$. Therefore $\overline{\mathcal{M}}$ is a σ -algebra.

Now consider the extension $\overline{\mu}$. Let $\overline{\mu}(E \cup F) = \mu(E)$. This is well-defined since if $E_1 \cup F_1 = E_2 \cup F_2$ then $E_1 \subset E_2 \cup N_2$, $\mu(E_1) \leq \mu(E_2)$, and likewise $\mu(E_1) \geq \mu(E_2)$, thus $\mu(E_1) = \mu(E_2)$. Then $\overline{\mu}(\emptyset) = \overline{\mu}(\emptyset \cup \emptyset) = 0$, and the countable additivity can be likewise easily verified. For the uniqueness, give any other measure $\overline{\mu}'$, $\overline{\mu}'(E \cup F) \leq \overline{\mu}'(E \cup N) \leq \mu(E)$. But $\overline{\mu}'(E \cup F) \geq \overline{\mu}'(E \cup \emptyset) = \mu(E)$, thus $\overline{\mu}' = \overline{\mu}$.

Exercise 7 If μ_1, \ldots, μ_n are measures on (X, \mathcal{M}) and $a_1, \ldots, a_n \in [0, \infty)$, then $\sum_{j=1}^{n} a_j \mu_j$ is a measure on (X, \mathcal{M}) .

Proof. Let $\mu' = \sum_{1}^{n} a_j \mu_j$. Then $\mu'(\emptyset) = 0$, given any collection disjoint sets $\{E_j\}$ in \mathcal{M} , $\mu'(\bigcup_{1}^{\infty} E_j) = \sum_{1}^{n} a_j \mu_j(\bigcup_{1}^{\infty} E_j) = \sum_{j=1}^{\infty} \sum_{1}^{n} a_j \mu_j(E_j) = \sum_{j=1}^{\infty} \mu'(E_j)$, therefore μ' is also a measure.

Exercise 8 If (X, \mathcal{M}, μ) is a measure space and $\{E_j\}_1^\infty \subset \mathcal{M}$, then $\mu(\liminf E_j) \leq \liminf \mu(E_j)$. Also, $\mu(\limsup E_j) \geq \limsup \mu(E_j)$ provided that $\mu(\bigcup_{j=1}^{\infty} E_j) < \infty$.

Proof. Recall

$$\liminf E_j = \bigcup_{j=1}^{\infty} \bigcap_{i=j}^{\infty} E_i, \quad \limsup E_j = \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} E_i$$

observe that $\{A_j = \bigcap_{i=j}^{\infty} E_j\}$ gives a sequence such that $A_1 \subset A_2 \cdots$, since μ is a measure, $\mu(\liminf E_j) = \mu(\bigcup_{j=1}^{\infty} A_j) = \lim_{j \to \infty} \mu(A_j) \leq \liminf \mu(E_j)$. For the second claim, in the same sense let $\{B_j = \bigcup_{i=j}^{\infty} E_j\}$, then $\mu(\limsup E_j) = \lim_{j \to \infty} \mu(B_j) \geq \limsup \mu(B_j)$.

Exercise 9 If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.

Proof. Since μ is a measure, $\mu(E) + \mu(F) = \mu(E \cap F) + \mu(E \cap F^c) + \mu(E \cap F) + \mu(E \cap F) = \mu(E \cup F) + \mu(E \cap F)$. \Box

Exercise 10 Given a measure space (X, \mathcal{M}, μ) and $E \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$ for $A \in \mathcal{M}$. Then μ_E is also a measure.

Proof. Apparently $\mu_E(\emptyset) = 0$. Given any collection of disjoint sets $\{A_j\}$ in \mathcal{M} , $\mu_E(\bigcup_{j=1}^{\infty} A_j) = \mu(\bigcup_{j=1}^{\infty} A_j \cap E) = \mu(\bigcup_{j=1}^{\infty} A_j \cap E) = \sum_{j=1}^{\infty} \mu_E(A_j)$. Therefore μ_E is a measure.

Exercise 11 A finitely additive measure μ is a measure iff it is continuous from below. If $\mu(X) < \infty$, μ is a measure iff it is countinuous from above.

Proof. Given a finitely additive measure μ , if it is continuous from below, then given a sequence of disjoint sets $\{E_j\}$, let $\{A_j = \bigcup_{i=1}^j E_i\}$, $\mu(\bigcup_j E_j) = \mu(\bigcup_j A_j) = \lim_{n \to \infty} \mu(A_n)$, by finite additivity $\lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \sum_{i=1}^n \mu(E_i) = \sum_{n=1}^\infty \mu(E_j)$. For the second claim, let $\{B_j = A_j^c\}$, then $\bigcup_j E_j = \bigcup_j A_j = (\bigcap_j (A_j^c))^c = (\bigcap_j (B_j))^c$, therefore $\mu(\bigcup_j E_j) + \mu(\bigcap_j B_j) = \mu(X)$. By continuity from above, $\mu(\bigcap_j B_j) = \lim_{j \to \infty} \mu(B_j) = \mu(X) - \lim_{j \to \infty} \mu(A_j)$, the rest is the same as the previous argument.

Exercise 12 Let (X, \mathcal{M}, μ) be a finite measure space.

(a) If $E, F \in \mathcal{M}$ and $\mu(E \triangle F) = 0$, then $\mu(E) = \mu(F)$.

(b) Say that $E \sim F$ if $\mu(E \triangle F)$. Then \sim is an equivalence relation on \mathcal{M} .

(c) For $E, F \in M$, define $\rho(E, F) = \mu(E \triangle F)$. Then $\rho(E, G) \leq \rho(E, F) + \rho(F, G)$, and hence ρ defines a metric on the space M / \sim .

Proof. Recall $E \triangle F = (E \setminus F) \cup (F \setminus E)$.

(a) Since $E \setminus F$ and $F \setminus E$ are disjoint, $\mu(E \triangle F) = \mu(E \setminus F) + \mu(F \setminus E)$. Since $E = (E \setminus F) \cup (E \cap F)$, $F = \mu(E \setminus F) = \mu(E \setminus F) + \mu(F \setminus E)$. $(F \setminus E) \cup (E \cap F), \ \mu(E \triangle F) = \mu(E) + \mu(F) - 2\mu(E \cap F).$ Notice that $\mu(E) \ge \mu(E \cap F), \ \mu(F) \ge \mu(E \cap F),$ therefore when $\mu(E \triangle F) = 0$, $\mu(E) = \mu(F) = \mu(E \cap F)$.

(b) Since "=" is an equivalence relation on $[0, \infty)$, "~" is obviously also an equivalence relation.

(c) Attempt to verify $\mu(E \triangle G) \leq \mu(E \triangle F) + \mu(F \triangle G)$:

$$\mu(E \triangle G) = \mu(E \backslash G) + \mu(G \backslash E)$$

= $\mu(E) + \mu(G) - 2\mu(E \cap G)$
 $\leq \mu(E) + 2\mu(F) + \mu(G) - 2\mu(E \cap F) - 2\mu(F \cap G)$
= $\mu(E \triangle F) + \mu(F \triangle G)$

where the inequality $\mu(F) + \mu(E \cap G) = \mu(F \cap E^c \cap G^c) + \mu(F \cap G^c \cap E) + \mu(F \cap G \cap E^c) + 2\mu(F \cap G \cap E) + \mu(F \cap G) + \mu(F \cap$ $\mu(E \cap G \cap F^c) \ge \mu(F \cap E \cap G^c) + \mu(F \cap G \cap E^c) + 2\mu(E \cap F \cap G) = \mu(E \cap F) + \mu(F \cap G)$ is utilized.

Exercise 14 If μ is a semifinite measure and $\mu(E) = \infty$, for any C > 0 there exists $F \subset E$ with $C < \mu(F) < \infty$.

Proof. Assume that there exists C > 0 such that $\forall F \subset E, \mu(F) \leq C$, then $\sup\{\mu(F) : F \subset E\} \leq C$. Denote the supremum with S. Then $\forall n \in \mathbb{N}, \exists F_n \subset E$ such that $S - 1/n < \mu(F_n) \leq S$. Since $F' = \bigcup_{n=1}^{\infty} F_n \subset E$, $\mu(F') = S$. Then consider $E \setminus F'$. Obviously $\mu(E \setminus F') = \infty$. Because μ is semifinite, there exist F'' such that $0 < \mu(F'') < \infty$. Then $\mu(F' \cup F'') > S$, contradiction. Therefore there is no supremum. \square

Exercise 15 Given a measure μ on (X, \mathcal{M}) , define μ_0 on \mathcal{M} by $\mu_0(E) = \sup\{\mu(F) : F \subset E \text{ and } \mu(F) < \infty\}$.

- (a) μ_0 is a semifinite measure. It is called the semifinite part of μ .
- (b) If μ is semifinite, then $\mu = \mu_0$.

(c) There is a measure ν on \mathcal{M} (in general, not unique) which assumes only values 0 and ∞ such that $\mu = \mu_0 + \nu.$

Proof. (a) First verify that μ_0 is a measure. Obviously $\mu_0(\emptyset) = 0$. Give any collection of disjoint sets $\{E_j\}$, let $E = \bigcup_{j=1}^{\infty} E_j$. For a measurable set $F \subset E$ and $\mu(F) < \infty$, $\mu(F) = \sum_j \mu(F \cap E_j) \le \sum_j \mu_0(E_j)$. Since this holds for any subset of E that has finite measure, $\mu_0(E) \le \sum_j \mu_0(E_j)$. If $\mu_0(E) = \infty$, then the reverse trivially holds. Otherwise $\mu_0(E) < \infty$. Then for each $E_j, \forall \epsilon/2^j$, there exists $F_j \subset E_j$ such that $\mu_0(E_j) - \epsilon/2^j < \mu(F_j) \le \mu_0(E_j)$. Then $\mu_0(E) \ge \mu(\bigcup_{j=1}^{\infty} F_j) = \sum_j \mu_0(E_j) - \epsilon$. Therefore $\mu_0(E) = \sum_j \mu_0(E_j), \mu_0$ is a measure. Given a E such that $\mu_0(E) = \infty$, take any C > 0, then $\exists F \subset E$ such that $C < \mu(F) < \infty$. Then

 $\mu_0(F) = \mu(F)$ is non-zero and finite. Therefore μ_0 is a semifinite measure.

(b) For any $E \in \mathcal{M}$, if $\mu(E) < \infty$, then $\mu(E) = \mu_0(E)$. If $\mu(E) = \infty$, then by Exercise 14 $\mu_0(E) = \infty$. Therefore $\mu = \mu_0$.

(c) Let

$$\nu(E) = \begin{cases} 0, & \text{if } E \text{ is } \sigma\text{-finite} \\ \infty, & \text{otherwise} \end{cases}$$

 ν is a measure since the disjoint union of σ -finite sets is still a σ -finite set, and if there is a set that is not σ -finite in the collection the union will also not be σ -finite. Now verify $\mu(E) = \mu_0(E) + \nu(E)$. When E is σ -finite, if $\mu(E)$ is finite, then the quality holds. If $\mu(E)$ is not finite, then by previous exercise $\mu_0(E) = \infty$, the quality still holds. If E is not σ -finite, the quality holds trivially.

Exercise 16 Let (X, \mathcal{M}, μ) be a measure space. A set $E \subset X$ is called locally measurable if for all $A \in \mathcal{M}$ such that $\mu(A) < \infty$, $E \cap A \in \mathcal{M}$. Let \mathcal{M} be the collection of all locally measurable sets. Clearly $\mathcal{M} \subset \mathcal{M}$; if $\mathcal{M} = \mathcal{M}$, then μ is called saturated.

- (a) If μ is σ -finite, then μ is saturated.
- (b) \mathcal{M} is a σ -algebra.

(c) Define $\tilde{\mu}$ on \mathcal{M} by $\tilde{\mu} = \mu(E)$ if $E \in \mathcal{M}$ and $\tilde{\mu}(E) = \infty$ otherwise. Then $\tilde{\mu}$ is a saturated measure on \mathcal{M} , called the saturation of μ .

(d) If μ is complete, so is $\overline{\mu}$.

(e) Suppose that μ is semifinite. For $E \in \mathcal{M}$, define $\underline{\mu}(E) = \sup\{\mu(A) : A \in \mathcal{M} \text{ and } A \subset E\}$. Then $\underline{\mu}$ is a saturated measure on \mathcal{M} that extends μ .

(f) Let X_1, X_2 be disjoint uncountable sets, $X = X_1 \cup X_2$, and \mathcal{M} the σ -algebra of countable or co-countable sets in X. Let μ_0 be counting measure on $\mathcal{P}(X_1)$ and define μ on \mathcal{M} by $\mu(E) = \mu_0(E \cap X_1)$. Then μ is a measure on $\mathcal{M}, \widetilde{M} = \mathcal{P}(X)$, and in the notation of (c) and (e), $\widetilde{\mu} \neq \mu$.

Proof. (a) Since μ is σ -finite, there exists a countable collection of disjoint sets $\{E_j\}$ such that $X = \bigcup_{j=1}^{\infty} E_j$ and $\mu(E_j) \leq \infty$. Therefore $\forall E \in \widetilde{\mathcal{M}}$, for each $E_j, E \cap E_j \in \mathcal{M}$. Thus $E = \bigcup_1^{\infty} (E \cap E_j) \in \mathcal{M}$. Hence $\widetilde{\mathcal{M}} = \mathcal{M}$.

(b) $\forall E \in \widetilde{\mathcal{M}}, \forall A \in \mathcal{M} \text{ such that } \mu(A) < \infty, E^c \cap A = (A \cap (E \cap A)^c) \in \mathcal{M}, \text{ therefore } E^c \in \widetilde{\mathcal{M}}.$ Give any countable collection of sets $\{E_j\}$ in $\widetilde{\mathcal{M}}$, for any $A \in \mathcal{M}$ that has finite measure, $(\cup_j E_j) \cap A = \cup_j (E_j \cap A) \in \mathcal{M}.$ Thus $\widetilde{\mathcal{M}}$ is a σ -algebra.

(c) First check that $\tilde{\mu}$ is a measure. Apparently $\tilde{\mu}(\emptyset) = 0$. Given any countable collection of disjoint sets $\{E_j\}$ in $\widetilde{\mathcal{M}}$, if $E_j \in \mathcal{M}$ for each j, then the additivity trivially holds. If $\exists i$ such that $E_i \notin \mathcal{M}$, assume $\cup_j E_j \in \mathcal{M}$. Obviously $\cup_j E_j$ cannot have finite measure. Therefore the equality still holds. Then check that $\tilde{\mu}$ is saturated. $\forall E$, if $\forall A \in \widetilde{\mathcal{M}}$ such that $\tilde{\mu}(A) < \infty$, $A \cap E \in \widetilde{\mathcal{M}}$, then $\mu(A) < \infty$, therefore $\tilde{\mu}(A \cap E) < \infty$, $A \cap E \in \mathcal{M}$, $E \in \widetilde{\mathcal{M}}$.

(d) $\forall N \in \widetilde{\mathcal{M}}$, if $\widetilde{\mu}(N) = 0$, then because μ is complete, $\forall F \subset N$, $\widetilde{\mu}(F) = 0$. Therefore $\widetilde{\mu}$ is also complete.

(e) First verify $\underline{\mu}$ is a measure. Obviously $\underline{\mu}(\emptyset) = 0$. Given any countable collection of disjoint sets $\{E_j\}$ in $\widetilde{\mathcal{M}}$, assume they are all finite. $\forall E_j, \exists A_j$ such that $A_j \in \mathcal{M}, A_j \subset E_j, \underline{\mu}(E_j) - \epsilon/2^j < \mu(A_j) \leq \underline{\mu}(E_j)$. Then $\underline{\mu}(\cup_j E_j) \geq \mu(\cup_j A_j) > \sum_j \underline{\mu}(E_j) - \epsilon$, therefore $\underline{\mu}(\cup_j E_j) \geq \sum_j \underline{\mu}(E_j)$. For the reverse inequality, take $A \in \mathcal{M}$ such that $\underline{\mu}(\cup_j E_j) - \epsilon < \mu(A) \leq \underline{\mu}(\cup_j E_j)$, since $A \subset \bigcup_j E_j$ and $\overline{\mu}(A) < \infty, A_j = A \cap E_j \in \mathcal{M}$, therefore $\underline{\mu}(\cup_j E_j) - \epsilon < \mu(A) \leq \sum_j \underline{\mu}(E_j)$. Therefore the reverse inequality holds, $\underline{\mu}(\cup_j E_j) = \sum_j \underline{\mu}(E_j)$. For the infinite case, since μ is semifinite, by exercise 14 both inequality hold trivially. If $E \in \mathcal{M}$, then $\overline{\mu}(E) = \underline{\mu}(E)$ since μ is semifinite. Therefore μ is an extend of μ .

Now check that $\underline{\mu}$ is saturated. $\forall E \in \widetilde{\mathcal{M}}, \forall A \in \mathcal{M}$ such that $\underline{\mu}(A) < \infty, E \cap A \in \widetilde{\mathcal{M}}$. Then $E \cap A = E \cap A \cap A \in \mathcal{M}$.

(f) Since μ_0 is a well-defined measure, it is straightforward that μ is also a measure. $\forall A \subset X$, given any B such that $B \in \mathcal{M}$ and $\mu(B) < \infty$, since $B \cap X_1$ is finite, B must be countable. Therefore $B \cap A$ is also countable, $B \cap A \subset \widetilde{\mathcal{M}}$. Therefore $\widetilde{\mathcal{M}} = \mathcal{P}(X)$. Obviously $\widetilde{\mu} \neq \underline{\mu}$, one example may be $\{x_1\} \cup X_2$ where $x_1 \in X_1$. \Box

Exercise 17 If μ^* is an outer measure on X and $\{A_j\}_1^\infty$ is a sequence of disjoint μ^* -measurable sets, then $\mu^*(E \cap (\bigcup_{j=1}^{\infty} A_j)) = \sum_{j=1}^{\infty} \mu^*(E \cap A_j)$ for any $E \subset X$.

Proof. Since $\cup_j (E \cap A_j) = E \cap (\cup_j A_j)$, $\mu^*(E \cap (\cup_1^\infty A_j)) \leq \sum_1^\infty \mu^*(E \cap A_j)$. For the reverse inequality, let $B_n = \bigcup_{i=1}^n A_i$. Then $\mu^*(E \cap B_n) = \mu^*(E \cap A_n) + \mu^*(E \cap B_n \cap A_n^c) = \mu^*(E \cap A_n) + \mu^*(E \cap B_{n-1}) = \sum_{i=1}^n \mu^*(E \cap A_i)$. Since $\mu^*(E \cap B_\infty) \geq \mu^*(E \cap B_n) = \sum_1^n \mu^*(E \cap A_i)$ for any $n, \ \mu^*(E \cap (\cup_1^\infty A_j)) \geq \sum_1^\infty \mu^*(E \cap A_j)$.

Exercise 18 Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A} , and $\mathcal{A}_{\sigma\delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} and μ^* the induced outer measure.

(a) For any $E \subset X$ and $\epsilon > 0$ there exists $A \in \mathcal{A}_{\sigma}$ with $E \subset A$ and $\mu^*(A) \leq \mu^*(E) + \epsilon$.

(b) If $\mu^*(E) < \infty$, then E is μ^* -measurable iff there exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^*(B \setminus E) = 0$.

(c) If μ_0 is σ -finite, the restriction $\mu^*(E) < \infty$ in (b) is superfluous.

Proof. (a) Recall the definition of the outer measure μ^* on X:

$$\mu^*(E) = \inf\{\sum_j \mu_0(A_j) : A_j \in \mathcal{A}, E \subset \bigcup_j A_j, j = 1, 2, \cdots\}$$

If $\mu^*(E) = \infty$, the inequality holds trivially. Consider the case where $\mu^*(E) < \infty$. Then $\forall \epsilon > 0, \exists \{A_j\}$ with $A_j \in \mathcal{A}$ for each j and $E \subset \bigcup_j A_j$ such that $\mu^*(\bigcup_j A_j) \leq \sum_j \mu^*(A_j) \leq \mu^*(E) + \epsilon$. Therefore take $A = \bigcup_j A_j$.

(b) If E is μ^* -measurable, then by the first claim given $\epsilon = 1/k$, $k \in \mathbb{N}$, there exists $A_k \in \mathcal{A}_{\sigma}$ such that $E \subset A_k$, $\mu^*(A_k) = \mu^*(A \cap E) + 1/k$. Let $B = \bigcap_k A_k$. It is obvious that $\mu^*(B) = \mu^*(E)$. Therefore $\mu^*(E) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c) = \mu^*(B)$, $\mu^*(B \setminus E) = 0$.

For the inverse, $\forall A \subset X$, $\mu^*(A \cap E) + \mu^*(A \cap E^c) \leq \mu^*(A \cap B) + \mu^*(A \cap E^c \cap B^c) + \mu^*(A \cap E^c \cap B) \leq \mu^*(A \cap B) + \mu^*(A \cap B^c)$. $\forall \epsilon > 0$, $\exists C \in \mathcal{A}_{\sigma}$ such that $\mu^*(C) \leq \mu^*(A) + \epsilon$ and $A \subset C$. By Caratheodory's theorem μ^* is a measure on $\mathcal{M}(\mathcal{A})$, therefore $\mu^*(A) + \epsilon \geq \mu^*(C) = \mu^*(C \cap B) + \mu^*(C \cap B^c) \geq \mu^*(A \cap B) + \mu^*(A \cap B^c)$. Therefore $\mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \cap E^c)$.

(c) Notice that only need to prove the forward direction given that $\mu^*(E) = \infty$. Since μ_0 is σ -finite, $\exists \{A_j\} \subset \mathcal{A}$ such that $\mu_0(A_j) < \infty$, $X = \cup_j A_j$. Let $E_j = E \cap A_j$, $\forall \epsilon > 0$, take $B_j \in \mathcal{A}_\sigma$ and $E_j \subset B_j$ such that $\mu^*(B_j) \leq \mu^*(E_j) + \epsilon/2^j$, then $\mu^*(B \setminus E) \leq \mu^*(\cup_j (B_j \setminus E_j)) \leq \sum_j \mu^*(B_j \setminus E_j) = \sum_j (\mu^*(B_j) - \mu^*(E_j)) \leq \epsilon$. Therefore $\mu^*(B \setminus E) = 0$.

Exercise 19 Let μ^* be an outer measure on X induced from a finite premeasure μ_0 . If $E \subset X$, define the inner measure of E to be $\mu_*(E) = \mu_0(X) - \mu^*(E^c)$. Then E is μ^* -measurable iff $\mu^*(E) = \mu_*(E)$.

Proof. If E is μ^* -measurable, then $\mu_0(X) = \mu^*(X) = \mu^*(E) + \mu^*(E^c)$, hence $\mu^*(E) = \mu_*(E)$. For the inverse, given $\mu^*(E) + \mu^*(E^c) = \mu_0(X)$, by exercise 18, $\forall n \in \mathbb{N}, \exists A_n \in \mathcal{A}_\sigma$ such that $E \subset A_n, \ \mu^*(A_n) \leq \mu^*(E) + 1/n$. Let $A = \bigcap_n A_n$, then $A \in \mathcal{A}_{\sigma\delta}$ with $E \subset A$. Since A_n is μ^* -measurable, $\mu^*(A \cap E^c) \leq \mu^*(A_n \cap E^c) = \mu(E^c) - \mu(A_n^c \cap E) \leq \mu_0(X) - \mu^*(E) - \mu(A_n^c) \leq \mu^*(A_n) - \mu^*(E) \leq 1/n$ for any n, thus $\mu^*(A \cap E^c) = 0$, therefore by exercise 18 E is μ^* -measurable.

Exercise 20 Let μ^* be an outer measure on X, \mathcal{M}^* the σ -algebra of μ^* -measurable sets, $\overline{\mu} = \mu^* | \mathcal{M}^*$, and μ^+ the outer measure induced by $\overline{\mu}$.

- (a) If $E \subset X$, we have $\mu^*(E) \leq \mu^+(E)$, with equality iff there exists $A \in \mathcal{M}^*$ with $E \subset A$ and $\mu^*(A) = \mu^*(E)$.
- (b) If μ^* is induced from a premeasure, then $\mu^* = \mu^+$.
- (c) If $X = \{0, 1\}$, there exists an outer measure μ^* on X such that $\mu^* \neq \mu^+$.

Proof. (a) By the construction of the outer measure, if $\mu^+(E) < \infty$, then $\forall \epsilon > 0, \exists E_j$ with $E_j \in \mathcal{M}^*$ for each j, and $E \subset \bigcup_j E_j$ such that $\mu^*(E) \leq \sum_j \mu^*(E_j) \leq \mu^+(E) + \epsilon$, therefore $\mu^*(E) \leq \mu^+(E)$. For the second claim, when $\mu^*(E) = \mu^+(E)$, one may take $E_j \in \mathcal{M}^*$ such that $\{E_j\}$ covers E and $\mu^*(E) = \mu^+(E) = \sum_j \mu^*(E_j)$. Thus just take $A = \bigcup_j E_j$. For the reverse, since A covers E, $\mu^*(E) \leq \mu^+(E) \leq \mu^*(A)$. By $\mu^*(E) = \mu^*(A)$ the equality must be taken.

(b) Since μ^* is induced from a premeasure, by exercise 18, for any $n \in \mathbb{N}$, there exists $A_n \in \mathcal{M}^*$ such that $E \subset A_n$ and $\mu^*(E) \leq \mu^*(A_n) \leq \mu^*(E) + 1/n$. Let $A = \bigcap_n A_n$, then $A \in \mathcal{M}^*$ with $E \subset A$ and $\mu^*(A) = \mu^*(E)$. By (a) $\mu^*(E) = \mu^+(E)$ for any $E \subset X$.

(c) Since $\mathcal{P}(X) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}, \text{ and } \mu^*(\emptyset) = \mu^+(\emptyset) = 0, \text{ let }$

$$\mu^*(\{0\}) = a, \quad \mu^*(\{1\}) = b, \quad \mu^*(\{0,1\}) = c$$

because of monotonicity, $0 \le a \le c$, $0 \le b \le c$. Then by subadditivity, $a + b \ge c$. If $\{0\}$ or $\{1\}$ is μ^* -measurable, then $\mathcal{M}^* = \mathcal{P}(X)$, $\overline{\mu} = \mu^* = \mu^+$. Therefore they must not be μ^* -measurable, $a + b \ne c$. Then $\mu^+(\{0\}) = \mu^+(\{1\}) = c$, $\mu^* \ne \mu^+$.

Exercise 21 Let μ^* be an outer measure induced from a premeasure and $\overline{\mu}$ the restriction of μ^* to the μ^* -measurable sets. Then $\overline{\mu}$ is saturated.

Proof. Give a set $E \subset X$ such that $\forall A$ that is μ^* -measurable, $E \cap A$ is still μ^* -measurable and $\mu^*(A) < \infty$, now show that E is μ^* -measurable. For any $F \subset X$ that $\mu^*(F) < \infty$, $\exists \epsilon > 0$ such that $A \in \mathcal{A}_{\sigma}$ such that $F \subset A$ and

$$\mu^{*}(F) + \epsilon \ge \mu^{*}(A) = \mu^{*}(A \cap (A \cap E)) + \mu^{*}(A \cap (A \cap E)^{c})$$

= $\mu^{*}(A \cap E) + \mu^{*}(A \cap E^{c}) \ge \mu^{*}(F \cap E) + \mu^{*}(F \cap E^{c})$

therefore E is μ^* -measurable.

Exercise 22 Let (X, \mathcal{M}, μ) be a measure space, μ^* the outer measure induced by μ , \mathcal{M}^* the σ -algebra of μ^* -measurable sets, and $\overline{\mu} = \mu^* | \mathcal{M}^*$

- (a) If μ is σ -finite, then $\overline{\mu}$ is the completion of μ .
- (b) In general, $\overline{\mu}$ is the saturation of the completion of μ .

Proof. (a) Since μ is σ -finite, if $E \in \mathcal{M}^*$ then $\exists B \in \mathcal{M}$ such that $E \subset B$ and $\mu^*(B \setminus E) = 0$. Therefore for any $n \in \mathbb{N}, \exists A_n \in \mathcal{M}$ such that $B \setminus E \subset A_n, \ \mu^*(A_n) \leq 1/n$. Then let $A = \bigcap_n A_n, \ \mu(A) = 0, \ B \setminus E \subset A$. Therefore $(B \setminus A) \subset E$ and $E \setminus (B \setminus A) \subset A, \ E \subset \overline{\mathcal{M}}$. Therefore $\mathcal{M}^* = \overline{\mathcal{M}}$. Obviously the measure on $\overline{\mathcal{M}}$ is the same as the completion of the measure.

(b) Denote the completion of (μ, \mathcal{M}) with $(\hat{\mu}, \overline{\mathcal{M}})$, and the saturation of the completion $(\tilde{\mu}, \mathcal{M})$. First show that $\widetilde{\mathcal{M}} = \mathcal{M}^*$. Give any E that is locally $\hat{\mu}$ -measurable, for any $F \subset X$ that $\mu^*(F) < \infty$, exists $A \in \mathcal{M}$ such that $F \subset A$ and $\mu^*(F) + \epsilon \ge \mu(A) = \hat{\mu}(A \cap (A \cap E)) + \hat{\mu}(A \cap (A \cap E)^c) \ge \mu^*(E \cap F) + \mu^*(E^c \cap F)$, therefore E is μ^* -measurable. Conversely, if E is μ^* -measurable, for any $A \in \hat{\mathcal{M}}$ such that $\hat{\mu}(A) < \infty$, obviously $A \in \mathcal{M}^*$, therefore $E \cap A \in \mathcal{M}^*$, $\mu^*(E \cap A) = \hat{\mu}(E \cap A) \le \infty$. Then by (a), $E \cap A \in \overline{\mathcal{M}}$, therefore E is locally $\hat{\mu}$ -measurable.

Now show that $\tilde{\mu} = \overline{\mu}$. $\forall E \in \widetilde{\mathcal{M}}$, if E is in $\overline{\mathcal{M}}$, then $\tilde{\mu}(E) = \overline{\mu}(E)$ since the extension is unique. If E is not in $\overline{\mathcal{M}}$, then $\tilde{\mu}(E) = \infty$. If $\mu^*(E) < \infty$, then $E \in \overline{\mathcal{M}}$. Therefore $\tilde{\mu} = \overline{\mu}$.

Exercise 23 Let \mathcal{A} be the collection of finite unions of sets of the form $(a, b] \cap \mathbb{Q}$ where $-\infty \leq a < b \leq \infty$.

(a) \mathcal{A} is an algebra on \mathbb{Q} .

(b) The σ -algebra generated by \mathcal{A} is $\mathcal{P}(\mathbb{Q})$.

(c) Define μ_0 on \mathcal{A} by $\mu_0(\emptyset) = 0$ and $\mu_0(A) = \infty$ for $A \neq \emptyset$. Then μ_0 is a premeasure on A, and there is more than one measure on $\mathcal{P}(\mathbb{Q})$ whose restriction to \mathcal{A} is μ_0 .

Proof. (a) Obviously \mathbb{Q} and \emptyset are in \mathcal{A} , and finite unions of elements in \mathcal{A} are still in \mathcal{A} . Give $(a, b] \cap \mathbb{Q}$, its completion is $(-\infty, a] \cup (b, \infty] \cap \mathbb{Q}$ is still a finite union, therefore \mathcal{A} is an algebra.

(b) Since for any $a \in \mathbb{Q}$, $\bigcap_{n=1}^{\infty} (a, a+1/n] \cap \mathbb{Q} = \{a\}$ and \mathbb{Q} is countable, any subset of \mathbb{Q} may be generated by single point sets. Therefore $\mathcal{M}(\mathcal{A}) = \mathcal{P}(\mathbb{Q})$.

(c) It is easy to see that μ_0 is finitely additive. Two measures that agree with μ_0 when restricted to \mathcal{A} may be given: (1) the counting measure; (2) the outer measure given by μ_0 . They will produce different results on $\{0\}$.

Exercise 24 Let μ be a finite measure on (X, \mathcal{M}) , and let μ^* be the outer measure induced by μ . Suppose that $E \subset X$ satisfies $\mu^*(E) = \mu^*(X)$.

(a) If $A, B \in \mathcal{M}$ and $A \cap E = B \cap E$, then $\mu(A) = \mu(B)$.

(b) Let $\mathcal{M}_E = \{A \cap E : A \in \mathcal{M}\}$, and define the function ν on \mathcal{M}_E defined by $\nu(A \cap E) = \mu(A)$. Then \mathcal{M}_E is a σ -algebra on E and ν is a measure on \mathcal{M}_E .

Proof. (a) $\mu^*(X \setminus E) = 0$. Therefore $\mu(A) \leq \mu^*(A \cap E) + \mu^*(A \cap E^c) = \mu^*(B \cap E) = \mu(B)$, and the reverse inequality is also true in the same sense. Therefore $\mu(A) = \mu(B)$.

(b) Obviously \varnothing and E are in \mathcal{M}_E . For any $A \in \mathcal{M}$, the completion of $A \cap E$ in E is still in \mathcal{M}_E . \mathcal{M}_E is also closed to countable unions since \mathcal{M} is a σ -algebra. Give any countable collection of disjoint sets $\{A_j \cap E\}$, $\nu(\cup_j A_j \cap E) = \mu(\cup_j A_j)$. Let $B_n = A_n \setminus \bigcup_1^{n-1} A_n$, then $B_j \cap E = A_j \cap E$. Therefore $\mu(\cup_j A_j) = \sum_j \mu(B_j) = \sum_j \mu(A_j) = \sum_j \nu(A_j \cap E)$.

Exercise 25 If $E \subset \mathbb{R}$, the following are equivalent:

(a) $E \in \mathcal{M}_m u$.

- (b) $E = V \setminus N_1$ where V is a G_{δ} set and $\mu(N_1) = 0$.
- (c) $E = H \cup N_2$ where H is an F_{σ} set an $\mu(N_2) = 0$.

Proof. Obviously (b) and (c) implies (a). Suppose $E \in \mathcal{M}_{\mu}$, if $\mu(E) < \infty$, give any positive integer n, according the previous proposition one may select an open set U_n and a compact set K_n such that the error of their measure is within 1/n. Then by taking the countable union or intersection one may find such H and V. If $\mu(E) = \infty$, let $E_j = E \cap (a_j, b_j]$. For any $\epsilon > 0$, for each j, one can find U_j such that $E_j \subset U_j$ and $\mu(U_j) \leq \mu(E_j) + 2^{-j}\epsilon$. Let $V = \bigcup_j U_j$, then $\mu(V \setminus E) = \sum_j \mu(U_j \setminus E_j) \leq \epsilon$. In the same sense one can find a countable union of compact sets, H, such that $\mu(E \setminus H) = 0$.

Exercise 26 If $E \in \mathcal{M}_{\mu}$ and $\mu(E) < \infty$, then for every $\epsilon > 0$ there is a set A that is a finite union of open intervals such that $\mu(E \bigtriangleup A) < \epsilon$.

Proof. By theorem 1.18, give any $\epsilon > 0$ one can find a compact K and an open U such that $\mu(U) - \epsilon \le \mu(E) \le \mu(K) + \epsilon$. Therefore one can find finite union of open intervals $I = \bigcup_j I_j$ that $K \subset I \subset U$. Then $\mu(E \bigtriangleup I) = \mu(E \backslash I) + \mu(I \backslash E) \le 2\mu(U \backslash K) = 2\epsilon$.

Exercise 27 Denote the Cantor set C. Show that if $x, y \in C$ and x < y, there exists $z \notin C$ such that x < z < y.

Proof. If such z does not exist, then x, y must lie in the same interval, which implies $|x - y| < 3^{-n}$ for any n, thus x = y, contradiction. Therefore x and y must not lie in the same interval. Hence $\exists N$ such that x and y are separated at the n-th iteration. Thus just pick any z in the middle third of the interval then x < z < y. \Box

Exercise 28 Let F be increasing and right continuous, and let μ_F be the associated measure. Then $\mu_F(\{a\}) = F(a) - F(a-)$, $\mu_F([a,b]) = F(b) - F(a-)$, $\mu_F([a,b]) = F(b) - F(a-)$, and $\mu_F = F(b-) - F(a)$.

Proof. Since $\{a\} = \bigcap_n [a, a+1/n), \mu_F(\{a\}) = \mu(\bigcap_n (a-1/n, a]) = \lim_{n \to \infty} (F(a) - F(a-1/n)) = F(a) - F(a-1)$. Then $\mu_F([a, b]) = \mu_F((a, b]) + \mu(\{a\}) - \mu(\{b\}) = F(b-1) - F(a-1)$. The rest can be easily shown with the same argument.

Exercise 29 Let E be a Lebesgue measurable set.

(a) If $E \subset N$ where N is the nonmeasurable set (taking one element of each equivalence class in $[0, 1)/\{x-y \in \mathbb{Q}\}$), then m(E) = 0.

(b) If m(E) > 0, then E contains a nonmeasurable set.

Proof. (a) Suppose $R = \mathbb{Q} \cap [0, 1)$. Take $E_r = \{x + r : x \in E \cap [0, 1 - r)\} \cup \{x + r - 1 : x \in E \cap [1 - r, 1)\}$. Then each E_r is measurable and a subset of [0, 1). Therefore $1 = m([0, 1)) \ge m(\cup_r E_r) = \sum_r m(E_r) = \sum_r m(E)$, m(E) = 0. (b) Because of translation invariance it suffices to consider $E \subset [0, 1]$. Obviously $E = \cup_r E \cap N_r$. Then if each $E \cap N_r$ is measurable, $m(E) = \sum_r m(\cup_r (E \cap N_r)) = \sum_r m((E \cap N))$, therefore m(E) = 0, contradiction.

Exercise 30 If $E \in \mathcal{L}$ and m(E) > 0, for any $\alpha < 1$ there is an interval I such that $m(E \cap I) > \alpha m(I)$.

Proof. Suppose that there exists an α such that for every open interval I, $m(E \cap I) \leq \alpha m(I)$. If E is bounded, then there exists a collection of disjoint open intervals such that $E \subset \bigcup_k I_k$ with $\sum_k m(I_k) \leq (1+\epsilon)m(E)$ for any $\epsilon > 0$. Then $m(E) = m(\bigcup_k (E \cap I_k)) \leq \sum_k \alpha m(I_k) \leq \alpha(1+\epsilon)(E)$, contradiction. If E is not bounded, by σ -finiteness, one may write $E = \bigcup_k E_k$ where $m(E_k) < \infty$ for each k. Take E_i such that $m(E_i) > 0$. Then for any $\alpha < 1$ there is an interval I such that $m(E \cap I) \geq m(E_i \cap I) > \alpha m(I)$.

Exercise 31 If $E \in \mathcal{L}$ and m(E) > 0, the set $E - E = \{x - y : x, y \in E\}$ contains an interval centered at 0.

Proof. By exercise 30, there is an interval $I = (x_0 - \alpha, x_0 + \alpha)$ such that $m(E \cap I) > 3/4m(I)$. Suppose there is a δ such that $0 \leq \delta < a$ and $\delta \notin E - E$. Then for any pair $x, y \in E, x - y \neq \delta$. Let $E_1 = E \cap (x_0 - a, x_0]$, $E_2 = E \cap (x_0, x_0 + a)$. Then $\forall x \in E_1, x + \delta \in I$ but not in E. Therefore $E_1 + \delta \subset I \setminus E$. Similarly $E_2 - \delta \subset I \setminus E$. Then $m(E \cap I) \leq m(E_1) + m(E_2) \leq 2(m(I) - m(I \cap E)) < 2/3m(E \cap I)$, contradiction. Therefore $\delta \in E - E$ and $-\delta \in E - E, (-\alpha, \alpha) \subset E - E$.

Exercise 33 There exists a Borel set $A \subset [0,1]$ such that $0 < m(A \cap I) < m(I)$ for every subinterval I of [0,1].

Proof. Enumerate the subintervals of I with rational endpoints. Then construct a series of cantor sets. For I_1 , split it into two disjoint intervals with finite measure. Then on each subinterval contruct a Cantor set K_1, K'_1 , both with finite measure. Next assume that K_1, \dots, K_n and K'_1, \dots, K'_n are already given for I_1, \dots, I_n . Let $L_n = (K_1 \cup \dots \cup K_n) \cup (K'_1 \cup \dots \cup K'_n)$, then L_n is compact and totally disconnected. Therefore $I_{n+1} \setminus L_n$ must contain some intervals, namely J_{n+1} . Then split J_{n+1} and construct K_{n+1} and K'_{n+1} on each subinterval. Let

 $K = \bigcup_n K_n$ and then obviously K'_n is disjoint from K for any n. Since K is the union of some Cantor sets, it is a borel set.

Let I be some subinterval of [0, 1]. Then there must be some I_n such that $I_n \subset I$. Therefore $K_n, K'_n \in I$. Then $0 < m(K_n \cap I_n) \le m(K \cap I) < m(K \cap I) + m(K'_n) \le m(I)$.

2 Chapter 2: Integration

Let the measurable space be (X, \mathcal{M}) for Exercise 1-7.

Exercise 1 Let $f: X \to \overline{\mathbb{R}}$ and $Y = f^{-1}(\mathbb{R})$. Then f is measurable iff $f^{-1}(\{\pm \infty\}) \in \mathcal{M}$, and f is measurable on Y.

Proof. If f is measurable then $f^{-1}(\{\pm\infty\}) \in \mathcal{M}$. Give any borel set $B \in \mathcal{B}_{\mathbb{R}}$, $f^{-1}(B) \in \mathcal{M}$. Therefore $f^{-1}(B \cap \mathbb{R}) = f^{-1}(B) \cap Y \in \mathcal{M}$, f measurable on Y. Conversely, for any borel set $B \in \mathcal{B}_{\mathbb{R}}$, $f^{-1}(B) = f^{-1}((B \cap \mathbb{R}) \cup (B \cap \{\infty, -\infty\})) \in \mathcal{M}$, f measurable.

Exercise 2 Suppose $f, g: X \to \overline{\mathbb{R}}$ are measurable.

(a) fg is measurable (where $0 \cdot (\pm \infty) = 0$).

(b) Fix $a \in \mathbb{R}$ and define h(x) = a if $f(x) = -g(x) = \pm \infty$ and h(x) = f(x) + g(x) otherwise. Then h is measurable.

Proof. (a) It is easy to see that $(fg)^{-1}(\pm\infty) \in \mathcal{M}$. Consider fg on $Y = (fg)^{-1}(\mathbb{R})$. If both f and g are finite, then fg measurable on this domain Y_1 . If one of the maps is infinite and the other map is zero, denote this domain with $Y_2 \in \mathcal{M}$. Y_2 is included in the inverse image of 0. Therefore fg is measurable on $Y_1 \cup Y_2 = Y$. Therefore fg is measurable on \mathbb{R} by exercise 1.

(b) Obviously $(f+g)^{-1}(\{\pm\infty\}) \in \mathcal{M}$. In the same sense consider f+g on Y. If f and g are both finite, then f+g is measurable on this domain Y_1 . Otherwise these two maps produce infinity of different signs and included in the reverse image of a. Therefore f+g is measurable on \mathbb{R} .

Exercise 3 If $\{f_n\}$ is a sequence of measurable functions on X, then $\{x : \lim f_n(x) \text{ exists}\}$ is a measurable set.

Proof. $\forall x \in X$, $\lim f_n(x)$ exists if and only if $g_3(x) = g_4(x)$, where $g_3(x) = \limsup f_n(x)$, $g_4(x) = \liminf f_n(x)$. Since f_n is measurable for each n, g_3 and g_4 are measurable, which implies $g_3 - g_4$ is also measurable on both \mathbb{R} and \mathbb{R} . Therefore $\{x : \lim f_n(x) \text{ exists}\} = (g_3 - g_4)^{-1}(\{0\}) \cup \{g_3^{-1}(\infty)\} \cap \{g_4^{-1}(\infty)\} \cup \{g_3^{-1}(-\infty)\} \cap \{g_4^{-1}(-\infty)\}$ is measurable.

Exercise 4 If $f: X \to \overline{\mathbb{R}}$ and $f^{-1}((r, \infty]) \in \mathcal{M}$ for each $r \in \mathbb{Q}$, then f is measurable.

Proof. $\forall r \in \mathbb{R}$, by the definition of real numbers there is a cauthy sequence of increasing rational numbers q_n such that $\lim q_n = r$. Then $f^{-1}((r, \infty]) = f^{-1}(\cap_n(q_n, \infty]) = \cap_n f^{-1}((q_n, \infty]) \in \mathcal{M}$, f measurable.

Exercise 5 If $X = A \cup B$ where $A, B \in \mathcal{M}$, a function f is measurable on X iff f measurable on both A and B.

Proof. Recall that f is measurable on $A \subset X$ if $f^{-1}(B) \cap A \in \mathcal{M}$ for any set B that is measurable. Therefore obviously f measurable on A and B. Conversely, give any measurable set M, then $f^{-1}(M) \cap A \in \mathcal{M}$, $f^{-1}(M) \cap B \in \mathcal{M}$. Then $f^{-1}(M) \in \mathcal{M}$.

Exercise 6 The supremum of an uncountable family of measurable $\overline{\mathbb{R}}$ -valued functions on X can fail to be measurable.

Solution. Consider any unmeasurable set Y (then it is uncountable), give $f_y = \chi_y$ for any $y \in Y$. Then $\sup_y f_y = \chi_Y$ is not measurable since Y is not measurable.

Exercise 7 Suppose that for each $\alpha \in \mathbb{R}$ we are given a set $E_{\alpha} \in \mathcal{M}$ such that $E_{\alpha} \subset E_{\beta}$ whenever $\alpha < \beta$, $\bigcup_{\alpha \in \mathbb{R}} E_{\alpha} = X$, and $\bigcap_{\alpha \in \mathbb{R}} E_{\alpha} = \emptyset$. Then there is a measurable function $f: X \to \mathbb{R}$ such that $f(x) \leq \alpha$ on E_{α} and $f(x) \geq \alpha$ on E_{α}^{c} for every α .

Solution. Take $f(x) = \inf\{q \in \mathbb{Q} : x \in E_q\}$. Then $\forall x \in E_\alpha$, for any rational q that $q > \alpha, x \in E_q$. Therefore $f(x) \le \alpha$. Similarly $\forall x \in E_\alpha^c, x \in E_q^c$ for any rational numbers $q \le a$, therefore $x \notin E_q, x$ may only be in some E_q that $q > \alpha$, therefore $f(x) \ge \alpha$. Note that: (1) f is \mathbb{R} -valued since $\forall x \in X, x \in E_q$ for some rational q, therefore $f(x) \le q$; if $f(x) = -\infty$ then $x \in \cap_{\alpha \in \mathbb{R}} E_\alpha$ contradiction. (2) f is \mathbb{R} -measurable because $\forall \alpha \in \mathbb{R}, f^{-1}([\alpha, \infty)) = \bigcup_n f^{-1}([q_n, \infty)) = \bigcup_n \{x : f(x) \ge q_n\} = \bigcup_n E_q^c \in \mathcal{M}$ where q_n is some decreasing cauthy sequence of rationals that converges to α .

Exercise 8 If $f : \mathbb{R} \to \mathbb{R}$ is monotone, then f is borel measurable.

Proof. Without loss of generality, suppose f is increasing, then f^{-1} is also monotone increasing on Imf. Thus $f^{-1}([a,\infty))$ must be some interval, therefore borel measurable. Hence f is borel measurable.

Exercise 9 Let $f: [0,1] \to [0,1]$ be the cantor function, and let g(x) = f(x) + x.

(a) g is a bijection from [0, 1] to [0, 2], and $h = g^{-1}$ is continuous from [0, 2] to [0, 1].

(b) If C is the cantor set, m(g(C)) = 1.

(c) By Exercise 1.29, g(C) contains a Lebesgue nonmeasurable set A. Let $B = g^{-1}(A)$. Then B is Lebesgue measurable but not Borel measurable.

Proof. (a) Obviously g is monotone increasing and continuous, thus g([0,1]) = [0,2], g is bijective. Therefore $\forall (a,b) \in [0,1], h^{-1}((a,b)) = g((a,b)) = (g(a),g(b)), h$ is open.

(b) Recall $C = [0,1] \setminus (\cup_k I_k)$. Since g is bijective and $\{I_k\}$ is pairwise disjoint, $g(C) = [0,2] \setminus g(\cup_k I_k) = [0,2] \setminus (\cup_k g(I_k))$. By the construction of f, f is constant on I_k . Thus $m(g(I_k)) = m(I_k)$. Therefore

$$m(g(C)) = m([0,2]) - \sum_{k} m(I_k) = 1$$

(c) Since $B = g^{-1}(A) \subset g^{-1}(g(C)) = C$, B must be of zero measure because it is contained in some null sets. Since h is continuous hence borel measurable, if B is borel measurable then $A = h^{-1}(B)$ would be borel measurable, contradiction.

Exercise 10 The following implications are valid iff the measure μ is complete.

(a) If f is measurable then $f = g \mu$ -a.e., then g is measurable.

(b) If f_n is measurable for $n \in \mathbb{N}$ and $f_n \to f \mu$ -a.e., then f is measurable.

Proof. (a) If μ is complete, then g - f must be measurable since it is only non-zero on some null sets, therefore g = g - f + f is Lebesgue measurable. Conversely, suppose any $N \subset E$ with E a null set. Then let $f = \chi_E$, $g = \chi_{E \setminus N}$. Then $f - g = \chi_N$ must be measurable. Therefore $N = (f - g)^{-1}(\{1\})$ is measurable.

(b) Since f_n is measurable for each n, $\lim f_n$ is measurable, and $\lim f_n = f \mu$ -a.e.. If μ is complete, by (a) f is measurable. Conversely, suppose any subset N of a null set, take $f_n = 0$ for each n and $f = \chi_N$, then f is measurable, N must be measurable.

Exercise 11 Suppose that f is a function on $\mathbb{R} \times \mathbb{R}^k$ such that $f(x, \cdot)$ is borel measurable for each $x \in \mathbb{R}$ and $f(\cdot, y)$ is continuous for each $y \in \mathbb{R}^k$. For $n \in \mathbb{N}$, define f_n as follows. For $i \in \mathbb{Z}$ let $a_i = i/n$, and for $a_i \leq x \leq a_{i+1}$ let

$$f_n(x,y) = \frac{f(a_{i+1},y)(x-a_i) - f(a_i,y)(x-a_{i+1})}{a_{i+1} - a_i}$$

Then f_n is borel measurable on $\mathbb{R} \times \mathbb{R}^k$ and $f_n \to f$ pointwise; hence f is borel measurable on $\mathbb{R} \times \mathbb{R}^k$. Conclude by induction that every function on \mathbb{R}^n that is continuous in each variable separately is Borel measurable. **Proof.** Since $f(x, \cdot) : \mathbb{R}^k \to \mathbb{R}$ and $x - a_i : \mathbb{R} \to \mathbb{R}$ is measurable, $f_n(x, y)$ is measurable. Now show that $f_n \to f$ pointwise. Since

$$|f - f_n| = |f(x, y) - \frac{1}{a_{i+1} - a_i} f(a_{i+1}, y)(x - a_i) - f(a_i, y)(x - a_{i+1})|$$

= $\frac{1}{a_{i+1} - a_i} |(f(x, y) - f(a_{i+1}, y))(x - a_i) - (f(a_i, y) - f(x, y))(x - a_{i+1})|$

Suppose some $\epsilon > 0$, then there is a open neighbourhood $B_{\delta}(x)$ such that $\forall x' \in B_{\delta}(x), |f(x) - f(x_0)| < \epsilon$. Take n large enough such that $[a_i, a_{i+1}]$ is in that neighbourhood, then

$$|f - f_n| \le \frac{\epsilon}{a_{i+1} - a_i} |(a_{i+1} - a_i)| = \epsilon$$

Since $f_n \to f$, f is borel measurable on $\mathbb{R} \times \mathbb{R}^k$. If $f(x) : \mathbb{R} \to \mathbb{R}$ is continuous, then it is measurable. Assume that if $f : \mathbb{R}^n \to \mathbb{R}$ is continuous with respect to each variable then it is measurable. Then suppose any function $g: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$. By previous exercise g is measurable. Therefore the proof is done by induction.

Exercise 13 Suppose $\{f_n\} \subset L^+$, $f_n \to f$ pointwise, and $\int f = \lim \int f_n < \infty$. Then $\int_E f = \lim \int_E f_n$ for all $E \in \mathcal{M}$. However, this need not be true if $\int f = \lim \int f_n = \infty$.

Proof. By Fatou's lemma,

$$\int_{E} f = \int f \chi_{E} = \int \liminf f_{n} \chi_{E} \le \liminf \int f_{n} \chi_{E} = \liminf \int_{E} f_{n} \chi_{E}$$

Conversely, write

$$\int f - \int_E f = \int_{E^c} f \le \liminf \int_{E^c} f_n = \liminf \left(\int f - \int_E f \right) = \int f - \limsup \int_E f$$

therefore $\limsup_E \int_E f_n \leq \int_E f \leq \liminf_E \int_E f_n$, $\lim_E \int_E f_n = \int_E f$, the proof is done. For counter-examples, just take $f_n = \chi_{[n,n+1]} + \chi_{(-\infty,0]}$ and $E = [0,\infty)$.

Exercise 14 If $f \in L^+$, let $\lambda(E) = \int_E f d\mu$ for $E \in \mathcal{M}$. Then λ is a measure on \mathcal{M} , and for any $g \in L^+$, $\int g \mathrm{d}\lambda = \int f g \mathrm{d}\mu.$

Proof. $\lambda(\emptyset) = 0$. Suppose a collection of disjoint measurable sets $\{E_n\}$, then $\lambda(\cup_n E_n) = \int f \chi_{\cup_n E_n} d\mu =$ $\sum_{n} \int f\chi_{E_n} d\mu = \sum_{n} \lambda(E_n), \text{ therefore } \lambda \text{ is a measure.}$ Give $\phi = \sum_{i} a_i \chi_{E_i}$ a simple function. Then $\int \phi d\lambda = \sum_{i} a_i \lambda(E_i) = \int f \sum_{i} a_i \chi_{E_i} d\mu = \int f \phi d\mu$. Now suppose

 $\{\phi_n\}$ an increasing collection of simple functions that $\phi_n \to g$. Then

$$\int g \mathrm{d}\lambda = \lim \int \phi_n \mathrm{d}\lambda = \lim \int f \phi_n \mathrm{d}\mu = \int f g \mathrm{d}\mu$$

Exercise 15 If $\{f_n\} \subset L^+$, f_n decreases pointwise to f, and $\int f_1 < \infty$, then $\int f = \lim \int f_n$.

Proof. Obviously $\{f_1 - f_n\}$ increases pointwise to $\{f_1 - f\}$. Therefore by MCT,

$$\lim \int (f_1 - f_n) = \int (f_1 - f)$$

hence

$$\int f = \int f_1 - \int (f_1 - f) = \int f_1 - \lim \int (f_1 - f_n) = \lim f_n$$

where the last equality is because $\int (f_1 - f_n) + \int f_n = \int f_1$.

Exercise 16 If $f \in L^+$ and $\int f < \infty$, for every $\epsilon > 0$ there exists $E \in \mathcal{M}$ such that $\mu(E) < \infty$ and $\int_E f > \int f - \epsilon$.

Proof. By the definition of integration, for every $\epsilon > 0$, there exists a simple function ϕ that $\int \phi > \int f - \epsilon$. Write $\phi = \sum_i a_i \chi_{E_i}$ with the standard representation (where $a_i \neq 0$ for each *i*). Let $E = \bigcup_i E_i$, then $\int_E f > \int \phi > \int f - \epsilon$. Now show that *E* is of finite measure. It is obvious that

$$\infty > \int \phi \ge \int \min\{a_i\} \chi_E = \min\{a_i\} \mu(E)$$

therefore $\mu(E) < \infty$.

Exercise 17 Assume Fatou's Lemma and deduce the monotone convergence theorem.

Proof. Suppose $\{f_n\}$ is a sequence in L^+ such that $f_j \leq f_{j+1}$ for all j, and $f = \lim_{n \to \infty} f_n = \liminf_{n \to \infty} f_n$, then by Fatou's lemma,

$$\int f = \int \liminf f_n \le \liminf \int f_n$$

Conversely,

$$0 = \int \liminf(f - f_n) \le \liminf \int (f - f_n) = \liminf (\int f - \int f_n) = \int f - \limsup \int f_n$$

where $\int (f - f_n) = \int f - \int f_n$ because of $\int (f - f_n + f_n) = \int f_n + \int (f - f_n) = \int f$. Thus $\int f = \lim \int f_n$. \Box

Exercise 18 Fatou's lemma remains valid if the hypothesis that $f_n \in L^+$ is replaced by the hypothesis that f_n is measurable and $f_n \ge -g$ where $g \in L^+ \cap L^1$.

Proof. Obviously $g_n = f_n + g \ge 0$. Then $\{g_n\}$ is a sequence in L^+ . Therefore by Fatou's lemma,

$$\int \liminf g_n = \int \liminf f_n + \int g \le \liminf \int f_n + \int g$$

therefore $\int \liminf f_n \leq \liminf \int f_n$.

Exercise 19 Suppose $\{f_n\} \subset L^1(\mu)$ and $f_n \to f$ uniformly.

(a) If $\mu(X) < \infty$, then $f \in L^1(\mu)$ and $\int f_n \to \int f$.

(b) If $\mu(X) = \infty$, the conclusions of (a) can fail.

Proof. (a) Since $f_n \to f$ uniformly, $\exists N$ such that $\forall n \geq N$ and $\forall x \in X$, $|f(x) - f_n(x)| \leq 1$. Let $g(x) = |f_N(x)| + 1$, then $f_n \leq g$ for each n. Since

$$\int g = \int |f_N(x)| + 1 = \int f_N(x) + \mu(X) < \infty$$

by DCT $f \in L^1(\mu)$ and $\int f_n \to \int f$. (b) Just take $f_n = (1/n)\chi_{[0,n)}$

Exercise 20 If $f_n, g_n, f, g \in L^1$, $f_n \to f$ and $g_n \to g$ a.e., $|f_n| \leq g_n$, and $\int g_n \to \int g$, then $\int f_n \to \int f$.

Proof. By taking real and imaginary parts, assume f_n and g_n are real. Then $f_n + g_n \ge 0$ and $g_n - f_n \ge 0$. By Fatou's Lemma,

$$\int (f+g) \le \int \liminf(f_n + g_n) \le \liminf \int (f_n + g_n) = \liminf \int f_n + \int g$$
$$\int (g-f) \le \int \liminf(g_n - f_n) \le \liminf \int (g_n - f_n) = \int g - \limsup \int f_n$$

thus $\int f_n \to \int f$.

Exercise 21 Suppose $f_n, f \in L^1$ and $f_n \to f$ a.e. Then $\int |f - f_n| \to 0$ iff $\int |f_n| \to \int |f|$.

Proof. Obviously

$$\left|\int |f| - \int |f_n|\right| = \left|\int |f| - |f_n|\right| \le \int |f - f_n| \to 0$$

Conversely, if $\int |f_n| \to \int |f|$, then by Exercise 20, $\int f_n \to \int f$. Thus $|\int f - \int f_n| = \int |f - f_n| \to 0$.

Exercise 22 Let μ be a counting measure on \mathbb{N} . Interpret Fatou's lemma and the monotone and dominated convergence theorem as statements about infinite series.

Solution. Obviously the measure of a measurable function f on (\mathbb{N}, μ) is $\int f = \sum_n f(n) = \sum_n a_n$. Therefore by Fatou's lemma, suppose $\{a_{nk}\}$ a sequence of nonnegative numbers, then $\sum_k \liminf_n a_{nk} \leq \liminf_n \sum_k a_{nk}$. By MCT, given a sequence of nonnegative numbers $\{a_{nk}\}$, if $a_{nk} \leq a_{n+1,k}$ for every n and k, and $a_{nk} \to a_k$ for every k, then $\lim_n \sum_k a_{nk} = \sum_k a_k$. The DCT says that for any sequence of complex numbers $\{a_{nk}\}$ such that $|a_{nk}| \leq |g_k|$ for each k, and $a_{nk} \to a_k$ for every k, then $\lim_n \sum_k a_{nk} = \sum_k a_k$. \Box

Exercise 25 Let $f(x) = x^{-1/2}$ if 0 < x < 1, f(x) = 0 otherwise. Let $\{r_n\}_1^\infty$ be an enumeration of the rationals, and set $g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n)$.

(a) $g \in L^1(m)$, and in particular $g < \infty$ a.e.

(b) g is discontinuous at every point and unbounded on every interval, and it remains so after any modification on a Lebesgue null set.

(c) $g^2 < \infty$ a.e., but g^2 not integrable on any interval.

Proof. (a) Observe

$$\int |g| = \int \sum_{1}^{\infty} \frac{f(x - r_n)}{2^n} = \sum_{1}^{\infty} \frac{1}{2^n} \int f(x - r_n) = \sum_{1}^{\infty} \frac{1}{2^{n-1}} < \infty$$

where by MCT,

$$\int f(x - r_n) = \lim_{t \to \infty} \int f(x - r_n) \chi_{(r_n + 1/t, r_n + 1)} = \lim_{t \to \infty} \int_{r_n}^{r_n + 1/t} (x - r_n)^{1/2} \mathrm{d}x = 2$$

therefore $g \in L^1(m)$, and obviously $g < \infty$ a.e.

(b) Suppose $x_0 \in \mathbb{R}$ with g continuous at x_0 . Then obviously $g(x_0) < \infty$. For any $\epsilon > 0$ and $0 < \delta < 1$, there exists $r_n \in \mathbb{Q}$ such that $x_0 < r_n < x_0 + \delta$. Let $x' \in (r_n, x_0 + \delta)$ such that

$$g(x_0) + \epsilon < \frac{1}{2^n} f(x' - r_n)$$

then $g(x') \geq \frac{1}{2^n} f(x'-r_n) \geq g(x_0) + \epsilon$. Since δ is arbitrary, contradiction. For any interval $(a,b) \subset \mathbb{R}$, take $r_n \in (a,b)$. Then for any ϵ that is sufficiently large, $g(r_n + (\frac{1}{2^n}\epsilon)^2) \geq \epsilon$. Therefore g(x) is unbounded on any interval. If after modification g is no longer unbounded on some interval, take this interval as the same interval (a,b). then $\exists \epsilon > 0$ such that $g(x-r_n) < \epsilon$ for all $x \in (a,b)$, then g is modified on at least $(r_n, r_n + (\frac{1}{2^n}\epsilon)^2)$ which has a non-zero measure, contradiction.

(c) By (a) it immediately follows that $g^2 < \infty$ a.e. For the second part, observe

$$\int g^2 \ge \int \sum_{1}^{\infty} \frac{f^2(x - r_n)}{4^n} = \sum_{1}^{\infty} \frac{1}{4^n} \int f^2(x - r_n) = \infty$$

where $\int f^2(x - r_n) = \infty$ follows the same argument as (a).

Exercise 32 Suppose $\mu(X) < \infty$. If f and g are complex valued measurable functions on X, define

$$\rho(f,g) = \int \frac{|f-g|}{1+|f-g|}$$

Then ρ is a metric on the space of measurable functions if we identify functions that are equal a.e., and $f_n \to f$ w.r.t. this metric iff $f_n \to f$ in measure.

Proof. The triangle inequality is obvious since

$$\frac{|f-g|}{1+|f-g|} = 1 - \frac{1}{1+|f-g|}$$

is an increasing function of |f - g|. Suppose $\epsilon > 0$. If $f_n \to f$ in measure then for any $\eta > 0, \exists N$ such that $\forall n \ge N,$

$$\mu(E_n = \{x : |f_n(x) - f(x)| > \epsilon\}) < \eta$$

take $\eta = \epsilon$, then

$$\rho(f_n, f) = \int_{E_n} \frac{|f_n - f|}{1 + |f_n - f|} + \int_{E_n^c} \frac{|f_n - f|}{1 + |f_n - f|} \le \mu(E_n) + \mu(X)\epsilon = \epsilon(1 + \mu(X)) \to 0$$

Conversely suppose $\rho(f_n, f) \to 0$. Then $\forall \eta > 0, \exists N \text{ such that if } n \geq N, \rho(f_n, f) < \eta$. Consequently,

$$\frac{\epsilon}{1+\epsilon}\mu(E_n) \le \int_{E_n} \frac{|f_n - f|}{1+|f_n - f|} \le \eta$$

therefore $\forall t > 0$, take $\eta = \frac{\epsilon t}{1+\epsilon}$, then $\exists N$ such that $\mu(E_n) \leq \eta \frac{1+\epsilon}{\epsilon} = t$.

Exercise 33 If $f_n \ge 0$ and $f_n \to f$ in measure, then $\int f \le \liminf \int f_n$.

Proof. Recall that given a sequence of real numbers $\{a_n\}$, there exist a subsequence $\{a_{n_k}\}$ such that $a_{n_k} \to L$ for any $\liminf a_n \leq L \leq \limsup a_n$. Then there is a subsequence $\int f_{n_k}$ such that $\lim \int f_{n_k} = \liminf \int f_n$. Obviously $f_{n_k} \to f$ in measure, therefore there is a subsequence $f_{n_{k_i}}$ that converges to f a.e. Therefore by Fatou's Lemma,

$$\int f = \int \liminf_{i} f_{n_{k_i}} \le \liminf_{i} \int f_{n_{k_i}} = \lim_{k} \int f_{n_k} = \liminf_{k} \int f_n$$

Exercise 34 Suppose $|f_n| \leq g \in L^1$ and $f_n \to f$ in measure,

- (1) $\int f = \lim \int f_n$, (2) $f_n \to f$ in L^1 .

Proof. (a) Since $f_n \to f$ in measure iff $\operatorname{Re}(f_n) \to f$ in measure and $\operatorname{Im}(f_n) \to f$ in measure, assume f_n and fare real-valued. Since $f_n \in L^1$ and there is a subsequence of f_n that converges to f a.e., $f \in L^1$. Since $g + f_n$ and $g - f_n$ are non-negative functions, the previous exercise implies that

$$\int g + \int f = \int \liminf(g + f_n) \le \liminf \int (g + f_n) = \int g + \liminf \int f_n$$
$$\int g - \int f = \int \liminf(g - f_n) \le \liminf \int (g - f_n) = \int g - \limsup \int f_n$$

therefore $\int f = \lim \int f_n$.

(b) Obviously $|f_n - f|$ converges to 0 in measure. Since $|f_n - f| \le |f_n| + |f| \le 2|g| \in L^1$, by (a), $\lim \int |f_n - f| = 1$ $0, f_n \to f \text{ in } L^1.$

Exercise 35 $f_n \to f$ in measure iff for every $\epsilon > 0$ there exist $N \in \mathbb{N}$ such that $\mu(\{x : |f_n(x) - f(x)| \ge \epsilon\}) \le \epsilon$ for $n \ge N$.

Proof. For any $\epsilon, \eta > 0$, suppose $\eta < \epsilon$, then $\exists N$ such that $\forall n \ge N$, $\mu(\{x : |f_n(x) - f(x)| > \epsilon\}) \le \mu(\{x : |f_n(x) - f(x)| > \eta\}) < \eta$. The reverse direction is trivial.

Exercise 36 If $\mu(E_n) < \infty$ for $n \in \mathbb{N}$ and $\chi_{E_n} \to f \in L^1$, then f is a.e. equal to the characteristic function of a measurable set.

Proof. Since $\chi_{E_n} \to f$ in L^1 , there exists a subsequence $\chi_{E_{n_k}} \to f$ a.e. Therefore there is a measurable function g such that g = f a.e. Since f and g can only take values 0 or 1, $f = \chi_{g^{-1}\{1\}}$ a.e.

Exercise 37 Suppose that f_n and f are measurable compelx-valued functions and $\phi : \mathbb{C} \to \mathbb{C}$.

(a) If ϕ is continuous and $f_n \to f$ a.e., then $\phi \circ f_n \to \phi \circ f$ a.e.

(b) If ϕ is uniformly continuous and $f_n \to f$ uniformly, almost uniformly, or in measure, then $\phi \circ f_n \to \phi \circ f$, uniformly, almost uniformly, or in measure, respectively.

(c) There are counterexamples when the continuity assumptions on ϕ are not satisfied.

Proof. (a) Let $x \in X$ be a point where f_n converges to f. Then

$$\lim_{n \to \infty} \phi(f_n(x)) = \phi(\lim_{n \to \infty} f_n(x)) = \phi(f(x))$$

so $\phi \circ f_n \to \phi \circ f$ a.e.

(b) Suppose $f_n \to f$ uniformly, $\forall \epsilon > 0$, $\exists N$ such that $|f_n - f| < \epsilon$ for $n \ge N$. Since ϕ is also uniformly continuous, $\forall \epsilon > 0$, $\exists \delta > 0$ such that $|\phi(f_n) - \phi(f)| < \epsilon$ for any $|f_n - f| < \delta$. Therefore $\phi \circ f_n \to \phi \circ f$ uniformly. The same argument applys for the almost uniform case. If $f_n \to f$ in measure, since ϕ is uniformly continuous, $\exists \eta$,

$$\{x : |\phi(f_n(x)) - \phi(f(x))| < \epsilon\} \subset \{x : |f_n(x) - f(x)| < \eta\}$$

the proof is done since $\mu(\{x: |f_n(x) - f(x)| < \eta\}) \to 0$

(c) Give $f_n = e^{-n}$, $f_n \to f$ uniformly, suppose $\phi = \ln x$, then $\phi \circ f_n = -n$, which is anywhere divergent. \Box

Exercise 38 Suppose $f_n \to f$ in measure and $g_n \to g$ in measure.

(a) $f_n + g_n \to f + g$ in measure.

(b) $f_n g_n \to fg$ in measure if $\mu(X) < \infty$, but not necessarily if $\mu(X) = \infty$.

Proof. (a) Let $\epsilon > 0$, then $\exists N_f, N_g$ such that $\mu(\{x : |f_n - f| \ge \epsilon/2\}) < \epsilon/2$ for $n > N_f$ and likewise for g. When n is large enough, since $|(f_n + g_n) - (f + g)| \le |f_n - f| + |g_n - g|$,

$$\{x : |(f_n + g_n) - (f + g)| \ge \epsilon\} \subset \{x : |f_n - f| \ge \epsilon/2\} \cup \{x : |g_n - g| \ge \epsilon/2\}$$

therefore $\mu(\{x: |(f_n+g_n)-(f+g)| \ge \epsilon\}) \to 0.$

(b) Likewise define ϵ, N_f, N_g . Since $|f_n g_n - fg| \le |f_n - f||g_n - g| + |f||g_n - g| + |g||f_n - f|$,

$$\{x: |fg - f_n g_n| > \epsilon\} \subset \{x: |f_n - f||g_n - g| > \epsilon/3\} \cup \{x: |f_n - f||g| > \epsilon/3\} \cup \{x: |f||g_n - g| > \epsilon/3\}$$

It is obvious that $\mu(\{x : |f_n - f||g_n - g| > \epsilon/3\}) \to 0$. To show $\mu(\{x : |f||g_n - g| > \epsilon/3\}) \to 0$, claim that for any $\eta > 0, \exists N \in \mathbb{N}$ such that $\mu(\{x : |f| > N\}) < \eta$. Let $E_n = \{x : |f| > n\}$, then E_n is a decreasing sequence of sets. Since $\mu(X) < \infty$, and |f| can only take on finite values which implies $\cap_n E_n = \emptyset$, by convergence from below, $\mu(E_n) \to 0$, which verifies the claim. Since

$$\{x: |f||g_n - g| > \epsilon/3\} \subset \{x: |f| > N\} \cup \{x: |g_n - g| < \epsilon/3N\}$$

for each N, there is

$$\mu(\{x: |f_n - f||g_n - g| > \epsilon/3\}) \le \mu(\{x: |f| > N\}) + \mu(\{x: |g_n - g| > \epsilon/3N\})$$

therefore $\forall \nu > 0$, take N and n such that $\mu(\{x : |f| > N\}) < \nu/2$ and $\mu(\{x : |g_n - g| > \epsilon/3N\} < \nu/2$, it can be seen that $\mu(\{x : |f||g_n - g| > \epsilon/3\}) \to 0$, similarly $\mu(\{x : |g||f_n - f| > \epsilon/3\}) \to 0$, the proof is done. \Box

Exercise 39 If $f_n \to f$ almost uniformly, then $f_n \to f$ a.e. and in measure.

Proof. Since $f_n \to f$ almost uniformly, $\forall n \in \mathbb{N}$, $\exists E_n \subset X$ such that $\mu(E_n) < 1/n$ and $f_n \to f$ uniformly on E_n^c . Then obviously $E = \bigcap_n E_n$ has zero measure by continuity from below, and $f_n \to f$ on E^c . Therefore $f_n \to f$ a.e.

 $\forall \epsilon > 0$, take $E \subset X$ such that $f_n \to f$ uniformly on E^c and $\mu(E) < \epsilon$. Then $\forall \eta > 0, \exists N$ such that if n > N

$$\{x: |f_n - f| > \eta\} \subset E$$

therefore $f_n \to f$ in measure.

Exercise 40 In Egoroff's theorem, the hypothesis " $\mu(X) < \infty$ " can be replaced by " $|f_n| \le g$ for all n, where $g \in L^1(\mu)$ ".

Proof. Without loss of generality, assume $f_n \to f$ for all $x \in X$. For $k, n \in \mathbb{N}$, let

$$E_n(k) = \bigcup_{m=n}^{\infty} \{ x : |f_m - f| \ge k^{-1} \}$$

then for fixed k, E_n is a decreasing sequence. For $x \in X$, if $x \in E_1(k)$, then $\exists m$ such that $|f_m - f| \ge 1/k$. Therefore $1/k \le |f_m + f| \le 2g$, $\int 1/2k\chi_{E_1(k)} = 1/2k\mu(E_1(k)) \le \int g$. Since $g \in L^1$, $\mu(E_1(k)) < \infty$. Therefore by continuity from below, $\mu(E_n(k)) \to 0$. Given $\epsilon > 0$ and $k \in \mathbb{N}$, choose n_k so large that $\mu(E_{n_k}(k)) \le \epsilon 2^{-k}$, and let $E = \bigcup_k E_{n_k}(k)$. Then $\mu(E) \le \epsilon$, and $|f_n - f| \le 1/k$ for $n > n_k$ and $x \in E^c$.

Exercise 41 If μ is σ -finite and $f_n \to f$ a.e., there exist measurable $E_1, E_2, \dots \subset X$ such that $\mu((\cup_1^{\infty} E_j)^c) = 0$ and $f_n \to f$ uniformly on each E_j .

Proof. Suppose $\mu(X) < \infty$, then by Egoroff's theorem, for each $k \in \mathbb{N}$, $\exists E_k$ such that $\mu(E_k^c) < 1/k$ and $f_n \to f$ uniformly on E_k . Let $F_n = \bigcup_{i=1}^{n} E_k$, then F_n^c is a decreasing sequence, therefore

$$\mu\left(\left(\bigcup_{1}^{\infty} E_{j}\right)^{c}\right) = \mu\left(\left(\bigcup_{1}^{\infty} F_{j}\right)^{c}\right) = \mu\left(\bigcap_{1}^{\infty} F_{j}\right) = 0$$

and $f_n \to f$ uniformly on each E_j .

Since μ is σ -finite, $X = X_1 \cup X_2 \cdots$ each with finite measure. Therefore for each *i*, there exists $\{E_k^i\}$ such that $\mu(X_i \setminus (\bigcup_k E_k^i)) = 0$ and $f_n \to f$ uniformly on each E_k^i . Since

$$\mu\left(\left(\bigcup_{i,k} E_k^i\right)^c\right) \le \mu\left(\bigcup_i \left(X_i \setminus \bigcup_k E_k^i\right)\right) = 0$$

 $\{E_k^i\}$ gives the desired sequence.

Exercise 42 Let μ be the counting measure on \mathbb{N} . Then $f_n \to f$ in measure iff $f_n \to f$ uniformly.

Proof. Suppose $f_n \to f$ in measure. Then $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that if n > N,

$$\mu(\{x : |f_n - f| > \epsilon\}) < 1/2$$

therefore $|f_n - f| < \epsilon$ for each $x \in \mathbb{N}$, hence $f_n \to f$ uniformly. Conversely, if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that if $n > N, |f_n - f| < \epsilon$ for each $x \in \mathbb{N}$, then $\mu(\{x : |f_n - f| > \epsilon\}) = 0.$

Exercise 44 If $f : [a, b] \to \mathbb{C}$ is Lebesgue measurable and $\epsilon > 0$, there is a compact set $E \subset [a, b]$ such that $\mu(E^c) < \epsilon$ and $f|_E$ is continuous.

Proof. For each $n \in \mathbb{N}$, let $E_n = f^{-1}(B_n(0))$. Then

$$\lim \mu(E_n) = \mu(\cup_n E_n) = \mu([a, b])$$

therefore $\exists m \in \mathbb{N}$ such that $\mu([a,b]) - \mu(E_m) \leq \epsilon/3$. Then $|f\chi_{E_m}| \leq m\chi_{[a,b]}$, thus $g \in L^1$. Hence by theorem 2.26 there is a sequence of continuous functions $g_j \to f\chi_{E_m}$. By corollary 2.32, there is a subsequence $g_{j_i} \to f\chi_{E_m}$ a.e. By Egoroff's theorem, there exists $F \subset E_m$ such that $g_{j_i} \to f\chi_{E_m}$ uniformly on $E_m \setminus F$ and $\mu(F) < \epsilon/3$. By theorem 1.18, there exists a compact set E such that $E \subset E_m \setminus F$ and $\mu(E) > \mu(E_m \setminus F) + \epsilon/3$. Therefore $f\chi_E$ is continuous, and

$$\mu(E^c) = \mu(E_m^c) + \mu(E_m \setminus E) \le \epsilon/3 + \mu(E_m \setminus F) + \mu(E_m \setminus F \setminus E) \le \epsilon$$

Exercise 45 If (X_j, \mathcal{M}_j) is a measurable space for j = 1, 2, 3, then $\bigotimes_1^3 \mathcal{M}_j = (\mathcal{M}_1 \otimes \mathcal{M}_2) \otimes \mathcal{M}_3$. Moreover, if μ_j is a σ -finite measure on (X_j, \mathcal{M}_j) , then $\mu_1 \times \mu_2 \times \mu_3 = (\mu_1 \times \mu_2) \times \mu_3$

Proof. $(\mathcal{M}_1 \otimes \mathcal{M}_2) \otimes \mathcal{M}_3$ is generated by $\mathcal{E} = \{(E_1 \times E_2) \times E_3 : E_j \in \mathcal{M}_j\}$. By the natural identification, one takes $(X_1 \times X_2) \times X_3 = X_1 \times X_2 \times X_3$. Thus $\mathcal{E} = \{E_1 \times E_2 \times E_3 : E_j \in \mathcal{M}_j\}$, which generates $\bigotimes_1^3 \mathcal{M}_j$.

Suppose μ_1, μ_2, μ_3 are σ -finite. Then on the algebra \mathcal{A} of rectangles,

$$(\mu_1 \times \mu_2) \times \mu_3((E_1 \times E_2) \times E_3) = \mu_1(E_1)\mu_2(E_2)\mu_3(E_3) = \mu_1 \times \mu_2 \times \mu_3(E_1 \times E_2 \times E_3)$$

since $(\mu_1 \times \mu_2) \times \mu_3$ and $\mu_1 \times \mu_2 \times \mu_3$ are both σ -finite measures and they agree on \mathcal{A} , they are equal by the uniqueness assertion in theorem 1.14.

Exercise 46 Let X = Y = [0, 1], $\mathcal{M} = \mathcal{N} = \mathcal{B}_{[0,1]}$, μ is the Lebesgue measure, and ν is the counting measure. If $D = \{(x, x) : x \in [0, 1]\}$ is the diagonal in $X \times Y$, then $\int \int \chi_D d\mu d\nu$, $\int \int \chi_D d\nu d\mu$, and $\int \chi_D d(\mu \times \nu)$ are all unequal.

Proof. Obviously,

$$\int \int \chi_D d\mu d\nu = \int \left[\int \chi_D^y d\mu \right] d\nu = 0$$
$$\int \int \chi_D d\nu d\mu = \int \left[\int \chi_D^x d\nu \right] d\mu = \int d\mu = 1$$

By definition,

$$\int \chi_D d(\mu \times \nu) = \inf \{ \sum_{n=1}^{\infty} \mu(A_j) \nu(B_j) : D \subset \bigcup_j (A_j \times B_j) \text{ where } A_j \times B_j \text{ are disjoint rectangles} \}$$

Suppose such sequence $A_j \times B_j$ that covers D. Then $[0,1] \subset \bigcup_j (A_j \cap B_j)$. Therefore $\mu(A_n \cap B_n) > 0$ for some n. Then $\mu(A_n) > 0$, and $\nu(B_n) = \infty$. Therefore the integral is ∞ .

Exercise 48 Let $X = Y = \mathbb{N}$, $\mathcal{M} = \mathcal{N} = \mathcal{P}(\mathbb{N})$, μ and ν are the counting measure. Define f(m, n) = 1 if m = n and f(m, n) = -1 if m = n + 1, and f(m, n) = 0 otherwise. Then $\int |f| d(\mu \times \nu) = \infty$, and $\int \int f d\mu d\nu$ and $\int \int f d\nu d\mu$ exist and are unequal.

Proof.

$$\int \left[\int f^{y} d\mu \right] d\nu = \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} f(n,j) = 0$$
$$\int \left[\int f_{x} d\nu \right] d\mu = \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} f(n,j) = 1$$

Let $E_1 = \{(n,n) : n \in \mathbb{N}\}$ and $E_2 = \{(n,n+1) : n \in \mathbb{N}\}$, then |f(x)| = 1 and non-zero iff $x \in E_1 \cup E_2$. Thus

$$\int |f| \mathrm{d}(\mu \times \nu) = (\mu \times \nu)(E_1) + (\mu \times \nu)(E_2) = \infty$$

since E_1 and E_2 are not finite.

Exercise 49 Prove Theorem 2.39 by using Theorem 2.37 and Proposition 2.12 together with the following lemmas.

(a) If $E \in \mathcal{M} \otimes \mathcal{N}$ and $\mu \times \nu(E) = 0$, then $\nu(E_x) = \mu(E^y) = 0$ for a.e. x and y.

(b) If f is \mathcal{L} -measurable and f = 0 λ -a.e., then f_x and f^y are integrable for a.e. x and y, and $\int f_x d\nu = \int f^y d\mu = 0$ for a.e. x and y.

Proof. (a) Since μ and ν are σ -finite,

$$0 = (\mu \times \nu)(E) = \int \mu(E^y) d\nu(y) = \int \nu(E_x) d\mu(x)$$

therefore $\nu(E_x) = \mu(E^y) = 0$ a.e. x and y.

(b) Let $E \subset X \times Y$ be the null set such that f(x, y) = 0 for all $(x, y) \notin E$. Since λ is the completion of $\mu \times \nu$, there is a set $E' \in \mathcal{M} \otimes \mathcal{N}$ such that $E \subset E'$ and $(\mu \times \nu)(E') = 0$. Therefore

$$0 = (\mu \times \nu)(E') = \int \mu(E'^y) d\nu(y) = \int \nu(E'_x) d\mu(x)$$

thus $\nu(E'_x) = 0$ and $\mu(E'^y) = 0$ a.e. Since μ and ν are complete, $\mu(E_x) = 0$ and $\nu(E^y) = 0$ a.e. Therefore $f_x = 0$ and $f^y = 0$ a.e. Hence f_x and f^y are measurable and integrable a.e. with $\int f_x d\nu = \int f^y d\mu = 0$.

Now assume f is \mathcal{L} -measurable. There exists an $(\mathcal{M} \otimes N)$ -measurable function g such that $f = g \lambda$ -a.e. If $f \geq 0$, then $g \geq 0$ a.e. Without the loss of generality assume $g \geq 0$, by Tonelli's theorem, $x \mapsto \int g_x d\nu$ and $y \mapsto \int g^y d\mu$ are non-negative and $(\mathcal{M} \otimes N)$ -measurable with

$$\int g \mathrm{d}\lambda = \int \int g(x, y) \mathrm{d}\mu(x) \mathrm{d}\nu(y) = \int \int g(x, y) \mathrm{d}\nu(y) \mathrm{d}\mu(x) \quad (*)$$

Since $g = f \lambda$ -a.e., if $f \in L^1(\lambda)$ then $g \in L^1(\mu \times \nu)$. By Fubini's theorem, this implies that $g_x \in L^1(\nu)$, $g_y \in L^1(\mu), x \mapsto \int g_x d\nu \in L^1(\mu)$ and $y \mapsto g_y d(\mu) \in L^1(\nu)$ a.e. x and y, and (*) holds.

Apply (b) to f - g, therefore $f_x \in L^1(\nu)$ and $f^y \in L^1(\mu)$ a.e. x and y provided that $f \in L^1(\lambda)$. In either cases, $\int g_x d\nu = \int f_x d\nu$ a.e. x, therefore $\int f_x d\nu$ is measurable and the same holds for y. Because f = g a.e.,

$$\int f d\lambda = \int g d\lambda$$

= $\int \int g(x, y) d\mu(x) d\nu(y) = \int \int g(x, y) d\nu(y) d\mu(x)$
= $\int \int f(x, y) d\mu(x) d\nu(y) = \int \int f(x, y) d\nu(y) d\mu(x)$

Exercise 50 Suppose (X, \mathcal{M}, μ) is a σ -finite measure space and $f \in L^+(X)$. Let

$$G_f = \{(x, y) \in X \times [0, \infty] : y \le f(x)\}$$

then G_f is $\mathcal{M} \times \mathcal{B}_{\mathbb{R}}$ -measurable and $\mu \times m(G_f) = \int f d\mu$; the same is also true if the inequality $y \leq f(x)$ in the definition of G_f is replaced by y < f(x).

Proof. Since $g = (x, y) \mapsto (f(x) - y) = ((s, t) \mapsto (s - t)) \circ ((x, y) \mapsto (f(x), y)), G_f = g^{-1}([0, \infty))$ is measurable. Then $(\mu \times m)(G_f) = \int m((G_f)_x) d\mu(x) = \int f d\mu$

Exercise 51 Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be arbitrary measure spaces.

(a) If $f: X \to \mathbb{C}$ is \mathcal{M} -measurable, $g: Y \to \mathbb{C}$ is \mathcal{N} -measurable, and h(x,y) = f(x)g(y), then h is $\mathcal{M}\otimes\mathcal{N}$ -measurable.

(b) If $f \in L^1(\mu)$ and $g \in L^1(\nu)$, then $h \in L^1(\mu \times \nu)$ and $\int h d(\mu \times \nu) = (\int f d\mu) (\int g d\nu)$

Proof. (a) Since f(x) and g(y) are $\mathcal{M} \otimes \mathcal{N}$ -measurable, h = fg is also measurable.

(b) Suppose $f \ge 0$ and $g \ge 0$. Then there exist increasing sequences ϕ_n and ψ_n of non-negative simple functions that converges to f and g respectively. Then $\phi_n \psi_n \to h$ pointwise. Suppose $\phi_n = \sum_i^k a_i \chi_{A_i}$, $\psi_n = \sum_j^l b_j \chi_{B_j}$. Then

$$\int \phi_n \psi_n = \sum_i^k \sum_j^l a_i b_j (\mu \times \nu) (A_i \times B_j) = \left(\sum_i^k a_i \mu(A_i)\right) \left(\sum_j^l b_j \nu(B_j)\right) = \int \phi_n \cdot \int \psi_n$$

therefore it is true for positive functions. For any complex function g, just decompose it into u = Reg, v = Imgthen u^+ , u^- , v^+ , v^- . Apply the above formula repeatedly, the proof is complete.

Exercise 52 The Fubini-Tonelli theorem is valid when (X, \mathcal{M}, μ) is an arbitrary measure space and Y is a countable sets, $\mathcal{N} = \mathcal{P}(Y)$, and ν is counting measure on Y.

Proof. If $f \in L^+(X \times Y)$, since ν is the counting measure, identify it with \mathbb{N} . Then

$$\int_X \int_{\mathbb{N}} f_x(n) \mathrm{d}\nu \mathrm{d}\mu = \int_X \left(\sum_{1}^{\infty} f_x(n) \right) \mathrm{d}\mu = \int_{\mathbb{N}} \int_X f^n(x) \mathrm{d}\mu \mathrm{d}\nu = \sum_{1}^{\infty} \left(\int_X f^n(x) \mathrm{d}\mu \right) = \int f \mathrm{d}(\mu \times \nu)$$

therefore Fubini-Tonelli theorem is true.

Chapter 3: Signed Measures and Differentiation 3

Exercise 1 Prove Proposition 3.1.

Proof. Suppose $\{E_j\}$ an increasing sequence, $F_j = E_j \setminus \bigcup_{1}^{j-1} E_i$, since $\mu(E_j) = \sum_{k=1}^n \mu(F_k)$,

$$\mu(\cup_j E_j) = \mu(\cup_j F_j) = \sum_j \mu(F_j) = \lim \mu(E_j)$$

Suppose $\{E_i\}$ an decreasing sequence, since $\mu(E_1) < \infty$,

$$\mu(\cap_j E_j) = \mu(E_1 \setminus (E_1 \setminus \cap_j E_j)) = \mu(E_1) - \mu(\cup_j (E_1 \setminus E_j)) = \mu(E_1) - \lim(\mu(E_1) - \mu(E_j)) = \lim \mu(E_j)$$

Exercise 3 Let ν be a signed measure on (X, \mathcal{M}) .

(a) $L^{1}(\nu) = L^{1}(|\nu|)$

- (b) If $f \in L^1(\nu)$, $|\int f d\nu| \leq \int |f| d|\nu|$ (c) If $E \in \mathcal{M}$, $|\nu|(E) = \sup\{|\int_E f d\nu| : |f| \leq 1\}$.

Proof. (a) Let $\phi \in L^1$ be a simple function, and write $\phi = \sum_{i=1}^n a_i \chi_{E_i}$, then

$$\int \phi d|\nu| = \sum_{i=1}^{n} a_i |\nu|(E_i) = \sum_{i=1}^{n} a_i (\nu^+(E_i) + \nu^-(E_i)) = \int \phi d\nu^+ + \int \phi d\nu^-$$

since for any $f \in L^1(\nu), f \in L^1(\nu^+) \cap L^1(\nu^-)$, thus

$$\int |f|d|v| = \left\{ \int \phi d|\nu| : \phi \in L^+ \text{ simple, } \phi \le |f| \right\} = \int |f|dv^+ + \int |f|dv^- \le \infty$$

hence $L^1(\nu) \subset L^1(|\nu|)$. The converse is obviously true.

(b)

$$\left|\int fd\nu\right| = \left|\int fd\nu^{+} - \int fd\nu^{-}\right| = \left|\int fd\nu^{+} - \int fd\nu^{-}\right| \le \int |f|dv^{+} + \int |f|dv^{-} = \int |f|d|\nu|$$

(c) Suppose $g = \chi_B - \chi_A$, where A and B are the half decomposition of ν . Then

$$\int_{E} gd\nu = \int (\chi_{B} - \chi_{A})\chi_{E}d\nu = \int \chi_{B\cap E}d\nu^{+} + \int \chi_{A\cap E}\nu^{-} = \nu^{+}(E) + \nu^{-}(E) = |\nu|(E)$$

If $|\nu|(E) = \infty$, the proof is done. Otherwise assume that $|\nu|(E) < \infty$, and let f be a measurable function with $|f| \le 1$. Then $|\int_E f d\nu| \le \int_E |f| d|\nu| \le |\nu|(E)$. Therefore

$$|\nu|(E) \le \left\{ |\int_E f d\nu| : |f| \le 1 \right\} \le |\nu|(E)$$

the proof is complete.

Exercise 4 If ν is a signed measure and λ, μ are positive measures such that $\nu = \lambda - \mu$, then $\lambda \ge \nu^+$ and $\mu \ge \nu^-$.

Proof. Suppose hahn decomposition A, B for ν , then $\forall E \in \mathcal{M}$,

$$\lambda(E) \ge \lambda(E \cap B) \ge \nu(E \cap B) = \nu^+(E \cap B) \ge \nu(E)$$

the same argument goes for $\mu \geq \nu^-$.

Exercise 5 If ν_1 , ν_2 are signed measures that both omit the value $+\infty$ or $-\infty$, then $|\nu_1 + \nu_2| \le |\nu_1| + |\nu_2|$.

Proof. Obviously $\nu_1 + \nu_2$ is still a signed measure, and $\nu_1 + \nu_2 = (\nu_1^+ + \nu_2^+) - (\nu_1^- + \nu_2^-)$. By exercise 4, $(\nu_1^+ + \nu_2^+) \ge (\nu_1 + \nu_2)^+$ and $(\nu_1^- + \nu_2^-) \ge (\nu_1 + \nu_2)^-$. Therefore

$$|\nu_1 + \nu_2| = (\nu_1 + \nu_2)^+ + (\nu_1 + \nu_2)^- \le (\nu_1^+ + \nu_2^+) + (\nu_1^- + \nu_2^-) = |\nu_1| + |\nu_2|$$

Exercise 6 Suppose $\nu(E) = \int_E f d\mu$ where μ is a positive measure and f is an extended μ -integrable function. Describe the Hahn decompositions of ν and the positive, negative, and total variations of ν in terms of f and μ .

Solution.
$$P = \{x : f(x) \ge 0\}, N = \{x : f(x) < 0\}.$$
 $\nu^+ = \int_{E \cap P} f d\nu, \nu^- = -\int_{E \cap N} f d\nu, |\nu| = \nu^+ + \nu^-.$

Exercise 7 Suppose that ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$.

- (a) $\nu^+(E) = \sup\{\nu(F) : F \in \mathcal{M}, F \subset E\}$ and $\nu^-(E) = -\inf\{\nu(F) : F \in \mathcal{M}, F \subset E\}.$
- (b) $|\nu|(E) = \sup\{\sum_{j=1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \cdots, E_n \text{ are disjoint, and } \cup_1^n E_j = E\}.$

Proof. (a) Let A and B be the half decomposition. Then

$$\nu^+(E) = \nu^+(E \cap P) \le \sup\{\nu(F) : F \subset E\}$$

moreover, if $F \subset E$, then

$$\nu(F) = \nu^+(F) \le \nu^+(E)$$

therefore

$$\nu^+(E) = \sup\{\nu(F) : F \subset E\}$$

the similar argument works for $v^{-}(E)$.

(b) Denote RHS with t.

$$|\nu|(E) = |\nu(E \cap A)| + |\nu(E \cap B)| \le t$$

moreover,

$$\sum_{1}^{n} |\nu(E_j)| \le \sum_{1}^{n} (\nu^+(E_j) + \nu^-(E_j)) = \nu^+(E) + \nu^-(E) = |\nu|(E)$$

the proof is complete.

Exercise 8 $\nu \ll \mu$ iff $|\nu| \ll \mu$ iff $\nu^+ \ll \mu$ and $\nu^- \ll \mu$.

Proof. Suppose $\mu(E) = 0$, then $|\nu|(E) = 0$ iff $\nu^+(E) = \nu^-(E) = 0$. If $\nu \ll \mu$, since $\forall F \in \mathcal{M}$ that is contained in E, $\nu(F) = \mu(F) = 0$, by exercise 2, $|\nu|(E) = 0$. The converse is trivial.

Exercise 9 Suppose $\{v_j\}$ is a sequence of positive measures. If $\nu_j \perp \mu$ for all j, then $\sum_{1}^{\infty} \nu_j \perp \mu$; and if $\nu_j \ll \mu$ for all j, then $\sum_{1}^{\infty} \nu_j \ll \mu$.

Proof. The second part is trivial by countable additivity. For the first part, denote E_j the ν_j -null set and E_j^c the μ -null set, then $\cap_j E_j$ is $\sum_{1}^{\infty} \nu_j$ -null and $(\cap_j E_j)^c$ is μ -null.

Exercise 10 Theorem 3.5 may fail when ν is not finite.

Solution. Take $d\nu(x) = dx/x$ and $d\mu(x) = dx$ on (0,1). Then obviously $\nu \ll \mu$, but consider $E_n = (0,1/n)$, obviously $\nu(E_n) > 1$. \square

Exercise 11 Let μ be a positive measure. A collection of functions $\{f_{\alpha}\}_{\alpha \in A} \subset L^{1}(\mu)$ is called uniformly integrable if for every $\epsilon > 0$ there exists $\delta > 0$ such that $\left| \int_{E} f_{\alpha} d\mu \right| < \epsilon$ for all $\alpha \in A$ whenever $\mu(E) < \delta$.

(a) Any finite subset of $L^{1}(\mu)$ is uniformly integrable.

(b) If $\{f_n\}$ is a sequence in $L^1(\mu)$ that converges in the L^1 metric to $f \in L^1(\mu)$, then $\{f_n\}$ is uniformly integrable.

Proof. (a) Since $f \in L^1(\mu)$, the finite signed measure $E \mapsto \int_E f d\mu$ is absolutely continuous with respect to μ .

Therefore for any $\epsilon > 0$, $\exists \delta_{\alpha}$ such that $|\int_{E} f_{\alpha} d\mu| < \epsilon$ when $\mu(E) < \delta_{\alpha}$. Just take $\delta = \min\{\delta_{\alpha}\} > 0$. (b) For any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\int |f_n - f| d\mu < \epsilon/2$ for any $n \ge N$. Let $I = \{0, 1, 2, \dots, N\}$ (with $f_0 = f$), then $\{f_i\}_{i \in I}$ is uniformly integrable. Therefore $\exists \delta > 0$ such that $|\int_{E} f_i d\mu| < \epsilon/2$ for any $i \in I$ with $\mu(E) < \delta$. Then for $i \in \mathbb{N} \setminus I$,

$$\left|\int_{E} f_{n} d\mu\right| = \left|\int_{E} (f_{n} - f) d\mu + \int_{E} f d\mu\right| \le \left|\int_{E} (f_{n} - f) d\mu\right| + \left|\int_{E} f d\mu\right| \le \epsilon$$

Exercise 12 For j = 1, 2, let μ_j, ν_j be σ -finite measures on (X_j, \mathcal{M}_j) such that $\nu_j \ll \mu_j$. Then $\nu_1 \times \nu_2 \ll$ $\mu_1 \times \mu_2$, and

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1)\frac{d\nu_2}{d\mu_2}(x_2)$$

Proof. If $(\mu_1 \times \mu_2)(E) = 0$, then

$$0 = \int \mu_2(E^{x_1}) d\mu_1(x_1)$$

therefore $\mu_2(E^{x_1})$ is μ_1 a.e. and hence $\nu_2(E^{x_1})$ is ν_1 a.e., then

$$(\nu_1 \times \nu_2)(E) = \int \nu_2(E^{x_1}) d\nu_1(x_1) = 0$$

The second part is verified by

$$\begin{aligned} (\nu_1 \times \nu_2)(E) &= \int f \chi_E d(\mu_1 \times \mu_2) = \int \left[\int f \chi_E d\mu_2(x_2) \right] d\mu_1(x_1) \\ &= \int \nu_2(E^{x_1}) d\nu_1(x_1) = \int \left[\int_E \frac{d\nu_2}{d\mu_2}(x_2) d\mu_2(x_2) \right] d\nu_1(x_1) \\ &= \int \left[\int \chi_E \frac{d\nu_1}{d\mu_1}(x_1) \frac{d\nu_2}{d\mu_2}(x_2) d\mu_2(x_2) \right] d\mu_1(x_1) \end{aligned}$$

	-	-	-	

Exercise 13 Let X = [0, 1], $\mathcal{M} = \mathcal{B}_{[0,1]}$, *m* is the Lebesgue measure, and μ is the counting measure on \mathcal{M} . (a) $m \ll \mu$ but $dm \neq f d\mu$ for any *f*.

(b) μ has no Lebesgue decomposition with respect to m.

Proof. (a) The first part is trivial. Suppose there exists such f, then $m({x}) = f(x) = 0$, therefore f = 0 and

$$1 = m(X) = \int_X f d\mu = 0$$

contradiction.

(b) Suppose that μ has a Lebesgue decomposition $\lambda + \rho$ with respect to m, with $\lambda \perp m$ and $\rho \ll m$. Then $\rho(\{x\}) = 0$, and $\lambda(\{x\}) = 1$. Suppose $X = A \sqcup B$ the Lebesgue decomposition with $\lambda(A) = m(B) = 0$. Then $A = \emptyset$, then m(B) = m(X) = 1, contradiction.

Exercise 16 Suppose that μ, ν are σ -finite measures on (X, \mathcal{M}) with $\nu \ll \mu$, and let $\lambda = \mu + \nu$. If $f = d\nu/d\lambda$, then $0 \le f < 1$ ν -a.e. and $d\nu/d\mu = f/(1-f)$.

Proof. Let $E_n = \{x : f(x) < -1/n\}$. Therefore

$$-n^{-1}\lambda(E_n) \ge \int_{E_n} f d\lambda = \nu(E_n) \ge 0$$

and hence $\mu(E_n) \leq \lambda(E_n) = 0$. It follows that $\mu(\bigcup_{1}^{\infty} E_n) = 0$, so $f \geq 0$ μ -a.e. Set $F = \{x : f(x) \geq 1\}$. Since ν is σ -finite, there is a sequence F_n of subsets of F which cover F such that $\nu(F_n) < \infty$ for each n. Because

$$\nu(F_n) = \int_{F_n} f d\lambda \ge \int_{F_n} 1 d\lambda = \lambda(F_n) = \mu(F_n) + \nu(F_n)$$

 $\mu(F_n) = 0$. Thus $\mu(F) = 0$ and $f < 1 \mu$ -a.e. Therefore $f, 1 - f \in L^+$, so for each $E \in \mathcal{M}$,

$$\int_E (1-f)d\lambda + \nu(E) = \int_E 1d\lambda = \lambda(E) = \mu(E) + \nu(E)$$

Thus $\int_E (1-f)d\lambda = \mu(E)$ for any $\nu(E) < \infty$. This result extends to all $E \in \mathcal{M}$ since ν is σ -finite. Thus $d\mu/d\lambda = (1-f)$. Therefore

$$\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda}\frac{d\lambda}{d\nu} = \frac{f}{1-f}$$

Exercise 17 Let (X, \mathcal{M}, μ) be a finite measure space, \mathcal{N} a sub- σ -algebra of \mathcal{M} , and $\nu = \mu | \mathcal{N}$. If $f \in L^1(\mu)$, there exists $g \in L^1(\nu)$ such that $\int_E f d\mu = \int_E g d\nu$ for all $E \in \mathcal{N}$; if g' is another such function then $g = g' \nu$ -a.e.

Proof. Define λ on \mathcal{N} by $\lambda(E) = \int_E f d\mu$, since $\rho \ll \nu$, the rest is obvious by the Radon-Nikodym theorem. \Box

Exercise 18 Prove Proposition 3.13c.

Proof. The second part is obvious:

$$\left|\int f d\nu\right| = \left|\int f \frac{d\nu}{d|\nu|} d|\nu|\right| \le \int |f| \, d|\nu|$$

Suppose $d\nu = gd\mu$. Since

$$\int |f| d\nu = \int |f| g d\mu \le \int |fg| d\mu = \int |f| d|\nu|$$

 $L^1(|\nu|) \subset L^1(\nu)$. Conversely, suppose $f \in L^1(\nu)$, let $\nu = \nu_r + \nu_i$ where ν_r and ν_i are real and imaginaty part of ν , then $f \in L^1(|\nu_r| + |\nu_i|)$. Therefore

$$\int |f|d|\nu| \le \int |f|(d|\nu_r| + d|\nu_i|) \le \infty$$

which concludes $L^1(|\nu|) \subset L^1(\nu)$.

Exercise 19 If ν, μ are complex measures and λ is a positive measure, then $\nu \perp \mu$ iff $|\nu| \perp |\mu|$ and $\nu \ll \lambda$ iff $|\nu| \ll \lambda$.

Proof. Suppose $\rho = |\nu_r| + |\nu_i| + |\mu_r| + |\mu_i|$, and $d\nu = f_1 d\rho$, $d\mu = f_2 d\rho$. If $\nu \perp \mu$, suppose the corresponding null sets be *P* and *N*. Obviously ν is null on *P* iff $|\nu|$ is null on *P*, similarly for μ . For the second part, suppose $\lambda(E) = 0$, if $\nu(E) = 0$, then for any $A \subset E$ that is measurable,

$$\lambda(A) = 0 = \int_A f_1 d\rho$$

therefore

$$\int_E |f_1| d\rho = |\nu|(E) = 0$$

which completes the proof.

Exercise 20 If ν is a complex measure on (X, \mathcal{M}) and $\nu(X) = |\nu|(X)$, then $\nu = |\nu|$.

Proof. Suppose $d\nu = fd\mu$. Then for any measurable set $E \subset X$,

$$\nu(E) + \nu(E^c) = |\nu|(E) + |\nu|(E^c)$$

therefore

$$\int_{E} f d\mu + \int_{E^{c}} f d\mu = \int_{E} |f| d\mu + \int_{E^{c}} |f| d\mu, \quad \int_{E} (f - |f|) d\mu = \int_{E^{c}} (|f| - f) d\mu$$

where f_{e} and f_{e} are real functions. Then

Let $f = f_r + if_i$, where f_r and f_i are real functions. Then

$$\int_{E} (f_{r} - |f|) d\mu + i \int_{E} f_{i} d\mu = \int_{E^{c}} (|f| - f_{r}) d\mu - i \int_{E^{c}} f_{i} d\mu$$

by comparing the real part and since $f_r \leq |f|$,

$$\int_{E} (f_r - |f|) d\mu = \int_{E^c} (|f| - f_r) d\mu = 0$$

therefore $|f| = f_r \mu$ -a.e. Thus

$$|\nu|(E) = \int_E |f| d\mu = \int_E f d\mu = \nu(E)$$

Exercise 21 Let ν be a complex measure on (X, \mathcal{M}) . If $E \in \mathcal{M}$, define

$$\mu_1(E) = \sup\left\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \cdots, E_n \text{ disjoint}, E = \bigcup_{1}^{n} E_j\right\},$$
$$\mu_2(E) = \sup\left\{\sum_{1}^{\infty} |\nu(E_j)| : n \in \mathbb{N}, E_1, \cdots \text{ disjoint}, E = \bigcup_{1}^{\infty} E_j\right\},$$
$$\mu_3(E) = \sup\left\{\left|\int_E f d\mu\right| : |f| \le 1\right\}.$$

Then $\mu_1 = \mu_2 = \mu_3 = |\nu|$.

Proof. It is obvious that $\mu_1 \leq \mu_2$. To see that $\mu_2 \leq \mu_3$, let

$$f = \sum_{k=1}^{\infty} \frac{\overline{\nu(E_k)}}{|\nu(E_k)|} \chi_{E_k}$$

obviously $|f| \leq 1$. Suppose $a \in \{r, i\}$ and $b \in \{+, -\}$ then $1 \in L^1(\nu_a^b)$. Therefore by DCT,

$$\int f d\nu_a^b = \lim_{n \to \infty} \int \sum_{k=1}^n \frac{\overline{\nu(E_k)}}{|\nu(E_k)|} \chi_{E_k} d\nu_a^b = \sum_{k=1}^\infty \frac{\overline{\nu(E_k)}}{|\nu(E_k)|} \nu_a^b(E_k)$$

It follows that

$$\int f d\nu = \int f d\nu_r + i \int f d\nu_i = \int f d\nu_r^+ - \int f d\nu_r^- + i \int f d\nu_i^+ - i \int f d\nu_i^-$$
$$= \sum_{k=1}^{\infty} \frac{\overline{\nu(E_k)}}{|\nu(E_k)|} \nu(E_k) = \sum_{k=1}^{\infty} |\nu(E_k)|$$

Now show that $\mu_3 = |\nu|$. Let $f = \overline{d\nu/d|\nu|}$. By prop 3.13,

$$\int_{E} f d\nu = \int_{E} f \overline{f} d|\nu| = |\nu|(E) \le \mu_{3}(E) \le \left| \int_{E} 1 d\nu \right| = |\nu(E)| \le |\nu|(E)$$

It remains to show that $\mu_3(E) \leq \mu_1(E)$. Suppose $|f| \leq 1$, then there exists a increasing sequence ϕ_k of simple functions which converges pointwise to f. Let

$$\phi_k = \sum_{j=1}^{n_k} c_{kj} \chi_{E_{kj}}$$

be the standard representation of ϕ_k . By DCT,

$$\int_E f d\nu_a^b = \lim_{k \to \infty} \sum_{j=1}^{n_k} c_{kj} \nu_a^b (E_{kj} \cap E)$$

hence

$$\int_{E} f d\nu = \lim_{k \to \infty} \sum_{j=1}^{n_k} c_{kj} \nu(E_{kj} \cap E)$$

thus

$$\left| \int_{E} f d\nu \right| = \lim_{k \to \infty} \left| \sum_{j=1}^{n_{k}} c_{kj} \nu(E_{kj} \cap E) \right| \le \lim_{k \to \infty} \sum_{j=1}^{n_{k}} \left| \nu(E_{kj} \cap E) \right| \le \mu_{1}(E)$$

Exercise 22 If $f \in L^1(\mathbb{R}^n)$, $f \neq 0$, there exist C, R > 0 such that $Hf(x) \ge C|x|^{-n}$ for |x| > R.

Proof. If ||f|| > 0, then there exists $R \in (0, \infty)$ such that $\int_{B_R(0)} |f| dm > 0$. If $x \in \mathbb{R}^n \setminus B_R(0)$, then $B_R(0) \subset B_{2|x|}(x)$. Therefore

$$Hf(x) \ge A_{2|x|}|f|(x) \ge \frac{1}{|x|^n m(B_2(0))} \int_{B_R(0)} |f| dm = C|x|^{-n}$$

If $\alpha \in (0, C/2R^n)$ and $R < |x| < (C/\alpha)^{1/n}$, then $Hf(x) \ge \alpha$ and

$$m(\{x: Hf(x) > \alpha\}) \ge m(B_{(C/\alpha)^{1/n}}) - m(B_R(0)) > Cm(B_1(0))/2\alpha$$

Exercise 23 A useful variant of the Hardy-Littlewood maximal function is

$$H^*f(x) = \sup\left\{\frac{1}{m(B)}\int_B |f(y)|dy: B \text{ is a ball and } x \in B\right\}$$

Show that $Hf \leq H^*f \leq 2^n Hf$.

Proof. It is clear that $Hf(x) \leq H^*f(x)$. For the other inequality, suppose $x \in B_r(y)$, then $B_r(y) \subset B_{2r}(x)$, by writing down definitions it is easy to see the inequality is true.

Exercise 24 If $f \in L^1_{loc}$ and f is continuous at x, then x is in the Lebesgue set of f.

Proof. Since f is continuous at $x, \forall \epsilon > 0$, there exists r > 0 such that $|f(y) - f(x)| < \epsilon$ for any $y \in B_r(x)$. Therefore

$$\frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y) - f(x)| dy \le \frac{1}{m(B(r,x))} \int_{B(r,x)} \epsilon dy = \epsilon$$

therefore $\lim_{r\to 0} A_r |f(y) - f(x)| = 0.$

Exercise 25 If E is a Borel set in \mathbb{R}^n , the density $D_E(x)$ of E at x is defined as

$$D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(r, x))}{m(B(r, x))}$$

whenever the limit exists.

(a) Show that $D_E(x) = 1$ for a.e. $x \in E$ and $D_E(x) = 0$ for a.e. $x \in E^c$.

(b) Find examples of E and x such that $D_E(x)$ is a given number $\alpha \in (0, 1)$ or such that $D_E(x)$ does not exist.

Proof. (a) Define $\mu(A) = m(E \cap A)$. Then $\mu = \chi_E dm$. Suppose $m(A) < \infty$, for any $\epsilon > 0$, there exists an open set U such that $m(U) < m(A) + \epsilon$. Therefore $\mu(U) < \mu(A) + \epsilon$. Now for any A that is measurable, take A_k such that $m(A_k) < \infty$ and $A = \bigcup_k A_k$. Then for each k there exists an open set U_k such that $\mu(U_k) < \mu(A_k) + 2^{-k}\epsilon$. Thus $\mu(\bigcup_k U_k \setminus A) < \epsilon$, which implies that μ is regular. So for a.e. $x \in \mathbb{R}^n$,

$$D_E(x) = \lim_{r \to 0} \frac{\mu(B_r(x))}{m(B_r(x))} = \chi_E(x)$$

(b) Suppose $E = \{x : x_i > 0\}$ and x = 0. Then $D_E(x) = 2^{-n}$.

Exercise 26 If λ and μ are positive, mutually singular Borel measures on \mathbb{R}^n and $\lambda + \mu$ is regular, then so are λ and μ .

Proof. Condition (i) holds trivially. For condition (ii), since $\mu \perp \lambda$, suppose P is μ -null and P^c is λ -null. Since $\lambda + \mu$ is regular, for any $E \subset P$ that is Borel measurable, there exists an open set U such that $\lambda(U) < \lambda(U) + \mu(U) < \lambda(E) + \epsilon$ for any $\epsilon > 0$, therefore λ is regular. The same goes for μ .

Exercise 27 Verify Example 3.25.

Proof. (a) is obvious since $\lim_{x\to\infty} T_F(x) = F(\infty) - F(-\infty) < \infty$. (b) If $F, G \in BV$, then

$$\sum_{1}^{n} |aF(x_j) + bG(x_j) - aF(x_{j-1}) - bG(x_{j-1})| \le \sum_{1}^{n} (a|F(x_j) - F(x_{j-1})| + b|F(x_j) - F(x_{j-1})|)$$

therefore $T_{aF+bG}(x) \leq aT_F(x) + bT_G(x)$, the rest is obvious.

(c) Since F is differentiable on \mathbb{R} and F' is bounded, by the mean value theorem,

$$\sum_{j=1}^{n} |F(x_j) - F(x_{j-1})| = \sum_{j=1}^{n} |F'(c_j)| |x_j - x_{j-1}| \le |M| |b-a|$$

therefore the variation on [a, b] is bounded.

(d) $\sin x \in BV([a, b])$ by (c). To see $\sin x \notin BV$, just take $x_j = -\pi/2 + 2\pi j$.

(e) Just take $x_j = 1/(\pi/2 + 2\pi j)$.

Exercise 30 Construct an increasing function on \mathbb{R} whose set of discontinuities is \mathbb{Q} .

Proof. Enumerate rational numbers $\mathbb{Q} = \{q_i\}$. Define $f := \sum_i 2^{-i} \chi_{(q_i,\infty)}$. Obviously $f(x) \leq f(y)$ if $x \leq y$. Suppose $\epsilon > 0$ and take N such that $2^{-N} < \epsilon$. There exists $\delta > 0$ such that $(x - \delta, x) \cup (x + \delta)$ does not contain q_1, \dots, q_N . If $y \in (x - \delta, x)$, then

$$f(x) \ge f(y) = f(x) - \sum_{y \le q_i < x} 2^{-i} \ge f(x) - \epsilon$$

therefore f is left continuous. If $y \in (x, x + \delta)$ then

$$f(x) \le f(y) = f(x) + \sum_{x \le q_i < y} 2^{-i}$$

if $x \notin \mathbb{Q}$, by the same argument f is right continuous. If $x \in \mathbb{Q}$, say $x = q_n$, then

$$f(x) + 2^{-n} \le f(y) < f(x) + 2^n + \epsilon$$

which is not continuous.