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1. Manifolds and Submanifolds

Definition 1.1. Let X be a topological space. For n ∈ N+, X is called a n-dimensional manifold if for every
x ∈ X, there exists U ⊆ X open with x ∈ U and φ : U → Rn such that φ is a homeomorphism between U
and φ(U), and φ(U) is open in Rn. Such (φ,U) is called a chart.

Example 1.2. (a) X = {(x, |x|) | x ∈ R} ⊆ R2. (R, φ) where φ : X → R, (x, |x|) 7→ x is a chart covers
X since φ is continuous and the inverse z 7→ (z, |z|) is also continuous. Therefore X is a 1-dimensional
manifold.

(b) Suppose S1 = {(x, y) ∈ R2 | x2 + y2 = 1} and take (x0, y0) ∈ S1. If |x0| ≠ 1, then {(x, y) ∈ S1 |
yy0 > 0} and φ : (x, y) 7→ x gives a chart, since im (φ) = (−1, 1) and its inverse x 7→ (x, sgn(y0)

√
1− x20)

are continuous. If |y0| ≠ 1, one can construct a chart by simply exchanging x0 and y0 in the |x0| ≠ 1 case.

Definition 1.3. Suppose U ⊂⊂ Rn, for a positive integer r, a function

f : U → Rm, (x1, · · · , xn) 7→ (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn))
is said to be Cr-differentiable, if for each fi(x1, · · · , xn), all partial derivatives

∂αfi
∂xα1

1 · · · ∂xαn
n

: U → R

exists and continuous for every α1, · · · , αn ∈ N+ such that α = α1 + · · · + αn ≤ r and each point in U .
Also, f is C0-differentiable if it is continuous, and C∞-differentiable (or smooth) if it is Cr-differentiable for
any non-negative integer r. For a smooth function f , if it satisfies the Cauthy-Riemann equation for each
complex variable, then it is Cw-differentiable (or analytic).

Definition 1.4. Let X be an n-dimensional manifold, two charts (φ,U) and (ψ, V ) are said to have a
Cr-overlap if φ ◦ ψ−1 : ψ(U ∩ V ) → ψ(U ∩ V ) is a Cr-diffeomorphism.

Definition 1.5. A family of charts {(qi, Ui)}i∈I of X is called an atlas if X =
⋃
i∈I Ui. An atlas of X

is called a Cr-atlas if all overlaps are Cr. A maximal Cr-atlas α (with respect to inclusion) is called a
Cr-differentiable structure and (X,α) is called a Cr-mainfold. A Cr-manifold with r ≥ 1 is called a smooth
manifold.

Proposition 1.6. Let M be a Cr-manifold and Φ is a Cr-atlas on M . Then there is a unique maximal
Cr-atlas on M which contains Φ.

Proof. Let T be the collection of all the charts of all the Cr-atlases that is compactable with Φ (i.e. for any
chart in these atlases, it has a Cr-overlap with with all the charts in Φ). T is an atlas since all the charts
have Cr-overlaps. T is maximal, since if T ⊆ T ′, T ′ is compactable with T and therefore contained in T . □

Example 1.7. (a) SupposeD ⊂⊂ Rn, let f : D → Rm be a continuous map, define Γf = {(x, f(x)) | x ∈ D}.
The chart P1 : Γf → D, (x, f(x)) 7→ x gives an analytic differentiable structure.

(b) Sn = {x ∈ Rn+1 | |x|2 = 1}. The following charts form a C∞-atlas on Sn. For i ∈ {±1}
and i ∈ {1, · · · , n + 1}, define (qi,s, Ui,s) where Ui,s = {x ∈ Sn | sxi > 0} and qi,s(x1, · · ·xn+1) =
(x1, · · · , x̂i, · · · , xn+1). Take (i, s) and (j, t) such that i < j, then the overlap

(qi,s ◦ p−1
j,t )(z) = qi,s(z1, · · · , ẑj , · · · , t

√
1− |z|2, · · · , zn)

is smooth.

Definition 1.8. Let M be a n-dimensional manifold with a Cr-differentiable structure αr, and let N be a
non-empty subset of M . N is called a k-dimensional submanifold of M if for all x ∈ N , ∃(φ,U) ∈ αr such
that N ∩ U = φ−1(Rk × {0}) where 0 ∈ Rn−k.
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Remark 1.9. A chart of M that satisfies the definition above is called a submanifold chart for N . If N is a
submanifold of M , then the set {(φ|U∩N , U ∩N)|(φ,U) ∈ αr} is a Cr-atlas of N .

Example 1.10. (a) N = {(x, y, z) ∈ R3 | z = x2 + y2} is a submanifold of R3, because (φ,R3) defined via
φ(x, y, z) = (x, y, z−x2−y2) is a submanifold chart, since (1) φ : R3 → R3 is a homeomorphism; (2) (φ,R3)
has a C∞-overlap with idid,R3 ; (3) φ−1(R2 × {0}) = N .

(b) N = {(x, |x|) | x ∈ R} is not a C1-submanifold of R2.

Remark 1.11. (a) If M is a smooth manifold and let (φ,U) and (ψ, V ) be two charts with C1-overlap, and
U ∩ V ̸= ∅, then the dimension of the target spaces are the same because the transition map must be
C1-diffeomorphism.

(b) Let M be a n-dimensional manifold and ψ : V → Rm an open embedding, then m = n. Therefore the
dimension of a manifold relies only on its topological structure.

Definition 1.12. A topological T 2 space (X, I) is called paracompact if for every open cover C ⊆ I of X,
there is a refinement S ⊆ I (i.e. S is an open cover of X such that for any U ∈ S, ∃V ∈ C with U ⊆ V )
which is locally finite (i.e. ∀x ∈ X,∃K ⊂ X an open neighbourhood of x such that only finitely elements of
S intersect K).

Theorem 1.13 (Smirnov metrization theorem1). Let X be a T 2-space, these statements are equivalent:
(a) X is metrizable;
(b) X is paracompact and locally metrizable, i.e. ∀x ∈ X,∃U ∈ I with x ∈ U such that (U, IU ) is

metrizable.

Remark 1.14. This lecture will only consider manifolds that are T2, second countable, paracompact, and
at most countablly many connected components. For those manifolds, the following tatements are true2:
(a) every smooth manifold has a unique C∞-differential structure, i.e. ∃!α∞ such that α∞ ∩ α ̸= ∅; (b)
there exists C0-manifolds that do not exist a C1-differential structure on it; (c) such manifolds are always
metrizable.

Definition 1.15. Let (M,αr) and (N, βr) be smooth manifolds and f :M → N a map between them. f is
said to be differentiable at x0 ∈ M if there exists (φ,U) ∈ αr with x0 ∈ U and (ψ, V ) ∈ βr with f(U) ⊆ V
such that ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) is differentiable at φ(x0).If ψ ◦ f ◦ φ−1 is Cr−1-differentiable and
ψ ◦f ◦φ−1 is differentiable at φ(x0), then f is r-times differentiable at x0. f is Cr-differentiable if ψ ◦f ◦φ−1

is Cr-differentiable.

Example 1.16. (a) For f : Rn → Rm, the definition of Cr-differentiability is consistent with the previous
one.

(b) Every Cr-map f : Sn → M is a restriction of a Cr-map Rn+1\{0} → M given the construction
F (x) = f(x/|x|2)

Definition 1.17. Let M be a C1-manifold, T = {(x, φ, U, v) : x ∈ U ⊂ M, (φ,U) ∈ α1, v ∈ Rn}. Define
x ∼ y: x = y and D(ψ ◦ φ−1)(φ(x))v = w. The equivalent classes in T/ ∼ is called a tangent vector of M
at x. T/ ∼ is called the tangent bundle of M . TxM = {[x, φ, U, v] | x ∈ U} is called the tangent space of M
at x. The tangent space obviously admits a linear structure. For f ∈ C1(M,N),

(a) it defines a linear map Tf : TM → TN via Tf([x, φ, U, v]) = [f(x), ψ, V,D(ψ◦f ◦φ−1)(φ(x))v], called
the derivative of f ;

(b) the restriction of Tf to TxM , denoted by Tpf , is called the derivative of f at x.

1This theorem is not proved here.
2The statements listed in this remark are not proved in the lecture, I just take the word from the lecturer.
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Example 1.18. (a) The inclusion ι : Sn ↪→ Rn+1 is analytic with respect to the differential sturcture given
in Example 1.7 (one need to specify this as there are differential structures on S7 which are not compactable
with it3). Let 1 ≤ i ≤ n+ 1, ε = {±1}, then

(idRn+1 ◦ ι ◦ φ−1
i,ε )(z) = (z1, · · · , zi−1,

√
1− |z|22ε, zi, · · · , zn)

therefore idRn+1 ◦ ι ◦ φ−1
i,ε ∈ Cw(B1(0),Rn+1), ι ∈ Cw(Sn,Rn+1).

(b) For S1, take (φ2,1, U2,1) around p = (x0, y0). Then TpS
1 = {[p, φ2,1, U2,1, w] | w ∈ R}. To see the

intuition picture, compute Tpι : TpS
1 → Tι(p)R2 ,

Tpι([p, φ2,1, U2,1, v]) = [p, idR2 , D(idR2 ◦ ι ◦ φ−1)(φ2,1(p))v]

with

D(idR2 ◦ ι ◦ φ−1)(x0)(v) = D(

[
x√

1− x2

]
)(x0)v =

[
1

− x0√
1−x2

0

]
v

which corresponds to the tangent line of S1.

Remark 1.19. N ⊆ M a smooth submanifold of M , identify TpN with Tpι(TpN) ⊆ Tp(M), since there is a
canonical isomorphism.

Definition 1.20. Suppose f ∈ Cr(M,N), a point p ∈ f(M) is called a regular value if for any x ∈ f−1(p),
the derivative of f at x is surjective.

Proposition 1.21. Let f : U → Rk be a Cr-map from an open set in Rn, b a regular value and M = f−1(b).
Then M is a Cr-submanifold of Rn.

Proof. (a) For any a ∈ M , the jacobian matrix of f at a is of rank r since the differential is surjective.
Consider the map F : U → Rn, x 7→ (f(x), xk+1, · · · , xn), its jacobian JF (a) is of rank n. By the inverse
function theorem, there exists V1 ⊂⊂ Rk, V2 ⊂⊂ Rn−k and a Cr-inverse G : V1 × V2 → W with b ∈ V1,
(ar+1, · · · , an) ∈ V2 and W = G(V1 × V2) defined on a open neighbourhood of (b, ak+1, · · · , an) such that

x = (F ◦G)(x) = (f(G(x)), G(x)k+1, · · · , G(x)n),

which implies

(f ◦G)(x1, · · ·xn) = (x1, · · · , xk).
therefore g = G(b, ·) : V2 → W ∩M is a bijective C1-map. Denote h : W ∩M → {0} × V2, x 7→ (0, g−1(x)),
then W ∩M = h−1({b} × Rn−k). Hence M is a n− k dimensional submanifold. From another point view,
h :W ∩M → Rn−r is a chart for the manifold M . □

Theorem 1.22 (Regular value theorem). Let f ∈ Cr(M,N), r ≥ 1, and q ∈ f(M) be a regular value of f ,
then f−1(q) is a Cr-submanifold of M of dimension dimM − dimN .

Proof. For all x ∈ f−1(q), take a chart (φ,U) around x such that f ◦φ−1(U) is contained in one chart (ψ, V )
in N . Suppose g : φ−1(U) → Rn, ψ ◦ f ◦φ−1, since p is a regular value of g, by proposition 1.21, there exists
(φ′, U ′) such that φ′−1({0}×Rm−n) = U ′∩g−1(p) ∼= φ(U ′)∩f−1(p), thus f−1(q) is a submanifold ofM . □

Example 1.23. Suppose f : R2 → R : (x, y) 7→ y2 − x3. The derivative of f−1(0) is zero only at (0, 0) and
f−1(0) is not a C1-manifold.

3Found by John Milnor in 1956.
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Example 1.24. For 0 < r1 < r2, define a torus:

M = {(x, y, z) ∈ R3 | (
√
x2 + y2 − r2)

2 + z2 = r21}

then M is a C1-manifold of R3, and M is C1-diffeomorphic to S1 × S1.

Proof. Apply proposition 1.21 here. Let F (x, y, z) = (
√
x2 + y2 − r2)

2 + z2 − r21, then M = F−1(0). Take
(x0, y0, z0) ∈M , claim that DF (x0, y0, z0) ̸= (0, 0, 0).

If z0 ̸= 0, then Fz(x0, y0, z0) = 2z0 ̸= 0. If z0 = 0 and x0 ̸= 0, then∣∣∣∣∂F∂x (x0, y0, z0)

∣∣∣∣ = 2(
√
x20 + y20 − r22)

|x0|√
x20 + y20

=
|r1x0|√
x20 + y20

̸= 0

If z0 = 0 and x0 = 0 but y0 ̸= 0, then ∣∣∣∣∂F∂y (0, y0, 0)
∣∣∣∣ = |r1| ≠ 0

therefore M is indeed a submanifold. For the second part, suppose a map

P : S1 × S1 →M, (α, θ) 7→ (r2 cos θ + r1 cosα cos θ, r2 sin θ + r1 cosα sin θ, r1 sinα)

where α, θ ∈ [0, 2π). P is smooth, and its inverse can be given easily and also smooth, therefore P is a
diffeomorphism. □

Definition 1.25. Suppose (M,α∞) a C∞-manifold, and p ∈ M . Define the stalk at p (of the sheaf of all
smooth functions of M)

C∞(M,R)p = {(f, U) | f ∈ C∞(U,R), U ⊂⊂M,p ∈ U}/ ∼

with (f, U) ∼ (g, V ) iff there exists open set W such that f |W = g|W . The equivalence class [f, U ]p in
C∞(M,R)p is called the germ of (f, U) and p. An R-linear map ∂ : C∞(M,R)p → R that satisfies the
Leibniz rule ∂([fg]p) = f(p)∂([g]p) + g(p)∂([f ]p) is called a derivative.

Example 1.26. An example of derivatives:

∂v,p : C
∞(M,R)p → R, [f ]p 7→

d(f ◦ φ−1(φ(p) + tv))

dt

∣∣∣
t=0

where f ◦ φ−1(φ(p) + tv) is seen as a function from R to R when differentiating.

Definition 1.27. Let (M,αr) be a smooth manifold. Take p ∈M , and I an open interval.
(a) A Cr-curve c : I →M is said to start at p if 0 ∈ I and c(0) = p.
(b) Two Cr-curves c : I → M and d : J → M with 0 ∈ I ∩ J are called jet-equivalent if c(0) = d(0) and

∃(φ,U) ∈ αr around c(0) such that (φ ◦ c)(i)(0) = (φ ◦ d)(i)(0) for 1 ≤ i ≤ r.

Remark 1.28. (a) Let (M,αn) be a C1-manifold and c : I → M and d : J → M C1-curves starting at
p0 ∈M , then T0c = T0d iff they are jet-equivalent, since T0c([0, idI , I, 1]) = [p, φ, U, (φ ◦ c)′(0)].

(b) The set Derp(M) = {A : C∞(M,R)p → R | A is a derivative} is called the set of derivatives at p.

Lemma 1.29. Let Mn be a C∞-manifold and (φ,U) be a C∞-chart of M and p ∈ U . Suppose that
φ(p) = 0 ∈ Rn. Let φi : U → R be the i-th coordinate of φ, i.e. φ = (φ1, · · · , φn), then the map

Φ : Derp(M) → Rn, A 7→ (A(φ1), · · · , A(φn))

is an R-linear isomorphism.
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Proof. The map is R-linear via construction. To see it is surjective, take v ∈ Rn, define Av ∈ Derp(M) via
Av(fp) = df(φ−1(tv))/dt|t=0, then A(φi) = d(πi ◦φ◦φ−1(tv))/dt = vi, where πi is the coordinate projection.
Therefore Φ(Av) = v.

Now verify its injectivity. Claim that ker(Φ) = {0}. Suppose A ∈ ker(Φ), then A(φ1) = · · · = A(φn) = 0.
Take fp ∈ C∞(M,R)p and point q around p, then

f(q)− f(p) = (f ◦ φ−1)(φ1(q), · · · , φn(q))− (f ◦ φ−1)(0)

by the fundamental theorem of calculus,

f(q)− f(p) =

∫ 1

0

d(f ◦ φ−1)(tφ1(q), · · · , tφn(q))
dt

dt

=

n∑
j=1

φj(q)

∫ 1

0

d(f ◦ φ−1)

∂xj
(tφ(q))dt

=

n∑
j=1

φj(q)gj(q), gj(q) =

∫ 1

0

d(f ◦ φ−1)

∂xj
(tφ(q))dt

thus

A(fp) =

n∑
j=1

A(φjgj) =

n∑
j=1

(φj(p)A(gj) + gj(p)A(φj)) = 0

therefore D = 0. Note that the inverse of Φ, Ψ : Rn → DerpM is given by

v 7→ d(− ◦ φ−1(tv))

dt

∣∣∣
t=0

it can be easily verified that Φ ◦Ψ = id and Ψ ◦ Φ = id. □

Proposition 1.30. Let M be C1-manifold and p ∈ M , and let the collection of jet-equivalence classes of
C1-curves starting at P be C(M). Then TpM ∼= C(M) naturally, i.e. for every map f ∈ C1(M,N), diagram

TpM C(M)

Tf(p)N C(N)

∼

∼

Tf Cf

commutes, where Cf : C(M) → C(N), [c] 7→ [f ◦ c].

Proof. The isomorphism is g : TpM → C, [p, φ, U, v] 7→ [c] with c(t) = φ−1(φ(p)+ tv), and its inverse is given
by h : [c] 7→ [p, φ, U, (φ ◦ c)′(0)]. It is indeed an isomorphism, since

h ◦ g([p, φ, U, v]) = [p, φ, U,
d

dt
(φ(p) + tv)] = [p, φ, U, v]

and

g ◦ h([c]) = [φ−1(φ(p)) + t(φ ◦ c)′(0)] = [c]

and the diagram commutes since

g ◦ Tf([p, φ, U, v]) = [ψ−1(ψ ◦ f(p) + tD(ψ ◦ f ◦ φ−1)(p)v)]

= [f ◦ φ−1(φ(p) + tv)] = Cf ◦ g([p, φ, U, v])

□



DIFFERENTIAL TOPOLOGY 7

Proposition 1.31. Let M be a C∞-manifold and p ∈ M . Then TpM ∼= Derp(M) naturally, i.e. for every
map f ∈ C∞(M,N), diagram

DerpM TpM

Derf(p)N Tf(p)N

∼

∼

Rf Tf

commutes, where Rf : A(−) 7→ A(− ◦ f)

Proof. The isomorphism is g : Derp(M) → TpM , A 7→ [p, φ, U,Φ(A)]. g is an R-linear homeomorphism by
lemma 1.29. Since

A(ψi ◦ f) =
d(ψi ◦ f ◦ φ−1)(tv)

dt

∣∣∣
t=0

, v =

A(φ1)
· · ·

A(φn)

 ,
by the chain rule

(g ◦Rf (A))i = A(ψi ◦ f) =
n∑
j=1

A(φj)
d(ψi ◦ f ◦ φ−1)

dxj
= (D(ψ ◦ f ◦ φ−1)(p)v)i = (Tf ◦ g(A))i

therefore the diagram commutes. □

Remark 1.32. (a) The tangent vectors [p, φ, e1], · · · , [p, φ, en] are denoted by ∂
∂x1

|p, · · · ∂
∂xn

|p, emphasizing
their description as derivatives.

(b) For a Cr-manifold Mn, define a Cr−1-differentiable structure on TM with charts (φ,U) ∈ αr, Tφ :
TU → φ(U)× Rn, [p, φ, U, v] 7→ (φ(p), v). Obviously it is bijective and R-linear, to see it is Cr−1, compute
the overlaps: for (φ,U), (ψ, V ) ∈ αr,

(Tφ)(Tψ)−1(ψ(p), w) = (φ(p), D(φ ◦ ψ−1)(ψ(p))w)

the second component is of Cr−1.

Definition 1.33. Let (M,αr) be a smooth manifold, its tangent bundle TM is said to be trivial if there
exists a Cr−1-diffeomorphism F : TM →M × Rn such that diagram

TM M × Rn

M

F

commutes, where the maps TM →M and M × Rn →M are canonical projections.

Example 1.34. (a) For S1, a trivialization is given by TS1 → S1 × R, [p, φ, U, v] 7→ (p, v).
(b) M = {P (θ, s) | θ ∈ (−π, π], s ∈ (−1, 1)}, where

P (θ, s) =

(
2 cos θ + s cos

θ

2
cos θ, 2 sin θ + s cos

θ

2
sin θ, s sin

θ

2

)
then M is a mobius strip. Its tangent bundle is not trivial.

Proof. Consider the following C∞-maps:

E1(θ) : R → TM, θ 7→
(
P (θ, 0),

∂P

∂θ
(θ, 0)

)
E2(θ) : R → TM, θ 7→

(
P (θ, 0),

∂P

∂s
(θ, 0)

)
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Assume there is a trivialization Φ, let fi = π ◦ Φ ◦ Ei, where π : M × R2 → R2 is the projection. Since
for each θ ∈ R, span{f1(θ), f2(θ)} = R2, therefore det(f1(θ), f2(θ)) ̸= 0. However, since det(f1(0), f2(0)) =
−det(f1(2π), f2(2π)), by applying the intermediate value theorem there is a contradiction. □

Definition 1.35. Let (Mn, αr) be a smooth manifold, i.e. r ≥ 1, a map X ∈ Cr−1(M,TM) such that
X(p) ∈ TpM for all p ∈M is called a Cr−1-vector field.

Proposition 1.36. Let (M,αr) be a smooth manifold, then TM is trivial iff there exist X1, · · · , Xn (Cr−1-
vector fields) on M such that for all p, span{X1(p), · · · , Xn(p)} = Rn.

Proof. If there exists vector fields X1, · · · , Xn that spans Rn for every point of M , suppose basis transfor-
mation P : {e1, · · · , en} → {X1(p), · · · , Xn(p)}, then the map Φ : [p, φ, U, v] 7→ (p, P−1v) is a trivialization.
To verify it is well defined, suppose two charts (U,φ), (V, ψ) with p ∈ U ∩ V , denote T = D(ψ ◦ φ−1)(p).
Then for the basis transformation P ′ : {e1, · · · , en} → {TX1(p), · · · , TXn(p)}, one have P ′ = TP . Thus

Φ([p, ψ, V, Tv]) = (p, (TP )−1Tv) = (p, P−1v)

On the other hand, if TM is trivializable, suppose a trivialization Φ, then just take Xi(p) = Φ(p, ei). □

Remark 1.37. The map E2 in example 1.34 cannot be extended to a vector field over M because it cannot
be defined on S1 since E2(0) ̸= E2(2π).

Definition 1.38. Let M and N be Cr-manifolds (r ≥ 1), f ∈ C1(M,N) and p ∈M .
(a) The map f is called immersive (submersive) at p if Tpf : TpM → Tf(p)N is injective (surjective).
(b) The map f is called an immersion (submersion) if f is immersive (submersive at every point of M).
(c) Suppose f is a Cr-map, it is called a Cr-embedding if: f is a Cr-submanifold of N and f :M → f(M)

is a Cr-diffeomorphism.

Proposition 1.39. Let f ∈ Cr(Mm, Nn) (r ≥ 1) be injective. Then f is a Cr-embedding iff f is an
immersion and f :M → f(M) is a homeomorphism.

Proof. ⇒ is trivial. For the other direction, first show that f(M) is a Cr-submanifold of N . For any p ∈M ,
take local charts (φ, V ) and ψ containing p and f(p) onM and N with ψ(f(p)) = 0 and φ(p) = 0 respectively.
Let g = ψ ◦ f ◦ φ−1 : V → Rn. Then

D(f)(0) =

(
∂gi
∂xj

(0)

)
, 1 ≤ i ≤ n, 1 ≤ j ≤ m

has full rank m. By exchanging coordinates, the square matrix(
∂gi
∂xj

(0)

)
, 1 ≤ i, j ≤ m

is of full rank and therefore invertible. Let gx = (g1, · · · , gm) and gy = (gm+1, · · · , gn), by the inverse

function theorem there exists W ⊆ V and Z ⊆ Rm both open with 0 ∈W ∩Z such that gx|W :W → Z is a

Cr-diffeomorphism. Let U = (Z × Rn−m)\g(V \W ). Then U ∩ g(V \W ) = ∅ and claim that g(W ) ⊆ U .

Assume there exists w ∈ W such that g(w) ∈ g(V \W ), since g is a homeomorphism, there exists a
sequence of points vn ∈ V \W such that g(vn) → g(w) and hence vn → w. Since V \W is a closed set of V ,
w ∈ V \W , leading to a contradiction, thus verifying the claim.

Now define φ : U → Rn, (z, y) 7→ (z, y − gy(g
−1
x (z))), then

D(φ)(z, y) =

[
Im 0
∗ In−m

]
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has full rank. Therefore φ : U → φ(U) is a Cr-diffeomorphism, with

φ−1(Rm × {0}) = {(z, y) ∈ U | ∃w ∈W, g(w) = (z, y)} = g(W ) ∩ U = g(V ) ∩ U.

therefore f(M) is indeed a submanifold of N . To show that M is diffeomorphic to f(M), notice that f is
already a homeomorphism, so one only need to indicate it has local inverse everywhere, whose existence is
implied by the inverse function theorem on f . □

Remark 1.40. IfM is compact, then the an injective immersion f is an embeddings since f(M) is Hausdorff,
and f :M → f(M) is bijective and continuous, meaning f :M → f(M) is a homeomorphism already.

Example 1.41. The map f : S1 → S1 × S1, exp(iθ) 7→ (exp(iθ), exp(i2θ)) is an embedding, because its
derivative is of full rank everywhere and S1 is compact.

Remark 1.42 (Construction of bump functions). First, construct a function g : R → [0, 1],

g(t) =


1, t ∈ [−1, 1]

0, t ∈ (−∞,−2] ∪ [2,∞)

f(2− |t|), t ∈ [−2,−1] ∪ [1, 2]

with

f(t) = exp

1− 1

1− t2 exp

(
1− 1

t2

)


g is smooth, with g(t) = 1 when |t| ≤ 1 and g(t) = 0 when g(t) ≥ 2. This gives the bump functions
bn : Rn → [0, 1], bn(x) = g(|x|2). Also denote Bs(x0) = {x ∈ Rn | |x− x0|2 < s}.

Theorem 1.43. Let M be a compact Cr-manifold for some 1 ≤ r ≤ ∞, then there exists g ∈ N and
f :M → Rn such that f is a Cr-embedding.

Proof. Since M is compact, there exists m ∈ N and Cr-charts (φ1, U1), · · · , (φm, Um) such that B3(0) ⊆
φi(Ui) and

⋃m
i=1 φ

−1
i (B1(0)) =M . Define

ψi(p) =

{
φi(p)bn(φi(p)), p ∈ Ui

0, p ̸∈ Ui

and fi : M → Rn+1 via fi = (ψi, bn ◦ φi), and f : M → Rm(n+1), f = (f1, · · · , fm). Since fi is a immersive
for all p ∈ Ui, f is an injective immersion, therefore it is an embedding because M is compact. □

Theorem 1.44 (Easy Whitney embedding theorem). Let Mn be a compact Cr-manifold with 2 ≤ r ≤ ∞,
then there is a Cr-embedding of M into R2n+1.

Proof. By theorem 1.43, M embeds in some Rq. If q ≤ 2n+1, there is nothing to prove. Assume q > 2n+1.
ReplaceM by its image under an embedding, thereforeM is a Cr-submanifold of Rq. It is sufficient to prove
that such an M embeds in Rq−1, for repetition of the argument will eventually embed M into R2n+1.

Suppose M ⊂ Rq, q > 2n + 1. Identify Rq−1 with {x ∈ Rq : xq = 0}. For v ∈ Sq−1\Rq−1 × {0}, let
πv : Rq → Rq−1 be the projection onto Rq−1 parallel to v. For the projection to be an injective immersion,
choose v such that:

(1) For all P,Q ∈M , v ̸= P −Q

|P −Q|
. This makes sure πv is injective.

(2) For all [p, w] ∈ TM ⊂M × Rq, v ̸= w

|w|
. This makes sure πv is an immersion.
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Since M is compact, the projection constructed is an embedding. Now need to show that such v does
exist. Denote (TM)1 = {[x, φ, U,w] ∈ TM | |w|2 = 1}, consider the map σ and ρ:

σ :M ×M\∆ → Sq−1, σ(P,Q) =
P −Q

|P −Q|2
ρ : (TM)1 → Sq−1, [x, φ, U,w] 7→ w

since M ×M\∆ is a manifold of dimension 2n, and (TM)1 is a manifold of dimension 2n−1, for q > 2n+1,
by lemma 1.45, the image of both σ and ρ have empty interior in Sq−1, therefore (Rq−1 × {0} ∩ Sq−1) ∪
im (σ) ∪ im (ρ) has empty interior, and therefore not equal to Sq−1, such v exists. □

Lemma 1.45. Let f ∈ C1(M,N) and dimM < dimN , then intN (f(M)) = ∅.

Proof. Recall that in measure theory, any subset X ⊂ Rn has measure zero (λn(X) = 0) iff for any ε > 0,
there exists {Ci}i∈N a sequence of cubes with X ⊆

⋃∞
i=1 Ci, and

∑∞
i=1 Vol(Ci) ≤ ε. Extend that definition

to subsets of manifolds, i.e. X ⊂ M (M is a C1-manifold) has measure zero iff for any charts (φ,U) ∈ α1,
φ(U ∩X) has measure zero in Rn.

Suppose f ∈ C1(M,N) and dimM < dimN , take charts {(φi, Ui)} on M such that f maps it to a chart
in N . For each i, denote fi : U → Rn, fi = ψi ◦ f ◦ φ−1

i and

g : U × Rn−m → Rn, g(x, y) = fi(x)

then fi(U) = g(U×{0}). Since U×{0} is of measure zero, fi(U) is of measure zero by lemma 1.48. Therefore
f(M) is of measure zero by lemma 1.47. Hence f(M) has empty interior by lemma 1.46. □

Lemma 1.46. A measure zero set has empty interior.

Proof. This is trivial since open sets are not of measure zero. □

Lemma 1.47. X ⊆ Rn has measure zero iff ∀x ∈ X, ∃U ⊆ Rn open with x ∈ U : λ(U ∩X) = 0.

Proof. One direction is trivial. For the other direction, for x ∈ X, let Ux the open set such that x ∈ Ux and
λ(Ux ∩X) = 0. Furthur more, for each x ∈ X, one can find a ball Brx(qx) with rx ∈ Q∩ (0,∞) and qx ∈ Qn
such that x ∈ Brx(qx) ⊆ Ux. Suppose B = {Brx(qx) | x ∈ X}, B is countable. Since X =

⋃
B∈B B ∩X and

λn(B ∩X) = 0 for each B ∈ B, X is of measure zero. □

Lemma 1.48. Let U ⊆ Rn and g ∈ C1(U,Rn) and X ⊆ U with measure zero. Then λn(g(X)) = 0.

Proof. By lemma 1.47, one can restrict to the case where ||D(g)(p)||2 ≤ K and U is a ball. For all x, y ∈ U ,
one has

|g(x)− g(y)|2 ≤ K|x− y|2
therefore the image of a cube of edge length l under g is contained in a cube of edge length lK

√
n. If X is

covered by cubes Ci with
∑∞
i=1 Vol(Ci) ≤ ε, then g(X) is covered by cubes C ′

i with
∞∑
i=1

Vol(C ′
i) ≤ εKn

thus λn(g(X)) = 0. □

Definition 1.49. For λ ∈ L(Rn,R), H = {x ∈ Rn | λ(x) ≥ 0} is called a half space.

Definition 1.50. Let M be a topological space that satisfies conditions listed in remark 1.14. M is called
a manifold with boundary if ∀x ∈M , there exists a pair (φ,U) with U open in M and φ : U → H such that
φ : U → φ(U) is a homeomorphism. p ∈ M is called a boundary point if there exists a chart such that p is
mapped to ∂H. The collection of all such points is called the boundary of M , denoted by ∂M .
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Remark 1.51. The definition of charts, atlases etc. can be generalized to manifolds with boundaries.

Example 1.52. (a) A half space H is a manifold with boundary.
(b) Let f ∈ C(Rm−1,R) and M = {(x, y) ∈ Rm}, φ :M → Rm, φ(x, y) = (x, y − f(x)) is a chart for M .
(c) D2 is a smooth manifold with boundary. Provide an atlas: φ1 : B1(0) → B1(0), (x, y) 7→ (x, y),

φ2 : {(x, y) ∈ D2 | x > 0} → R2, (x, y) 7→ (x −
√
1− y2, y), φ3 : {(x, y) ∈ D2 | y > 0} → R2, (x, y) 7→

(x, y −
√
1− x2), φ4 and φ5 may be constructed similarly.

(d) Let M be a C∞-manifold with ∂M = ∅ and (φ,U) ∈ α∞. Let B be an open ball in φ(U), then
M\φ−1(B) is a manifold with boundary ∂M = φ−1(∂B).

Definition 1.53. Let U be an open set in a half space H of Rn, and 0 ≤ r ≤ ∞, define Cr(U,Rm) to be the
collection of continuous maps f : U → Rm such that all the partial derivatives up to order r are continuous.

Proposition 1.54. Let H be a half space of Rn, U ⊆ H be open in H, 0 ≤ r ≤ ∞ and f ∈ Cr(U,Rm).
Then there exists V ⊆ Rn open with U ⊆ V and g ∈ Cr(V,Rm) such that g|U = f .

Proof. The case r = ∞ will not be proved here4. For the case where 0 ≤ r ≤ ∞, if H = Rn, then the proof
is done. Otherwise w.l.o.g assume H = Rn−1 × [0,∞). Define

V = U ∪ {(x, y) ∈ Rn | (x,−y
j
) ∈ U, j = 1, · · · , r + 1}

then V is open. Define

g(x, y) =

f(x, y), (x, y) ∈ U∑r+1
j=1 cjf(x,−

y

j
), (x, y) ∈ V \U

such that c1, · · · , cr+1 ∈ R satisfies

r+1∑
j=1

cj

(
−1

j

)k
= 1, k = 0, · · · , r

the determinant of this linear equation (Van der Monde determinant) is non-zero, therefore such ci exists. □

Example 1.55. For f ∈ C1((−1, 0],R), f(x) = (1 + x)2, proposition 1.54 says

g(x) =

{
(1 + x)2, x ∈ (−1, 0]

(1 + x)2 − 3x2, x ∈ (0, 1)

is a C1 extension.

Definition 1.56. N ⊆ Rn is called a Cr-submanifold of dimension k if for all p ∈ N , there exists (φ,U) ∈ αr
with p ∈ U and a half space H of Rk such that φ−1(H × {0}) = N ∩ U . For N ⊆ M where M is a Cr-
manifold, N is said to be a k-dimensional Cr-submanifold if for all p ∈ N , there exists (φ,U) ∈ αr with
p ∈ U such that φ(U ∩N) is a Cr-submanifold of Rm.

Definition 1.57. Let Nn be a Cr-submanifold of Mm. Then N is said to be neat if
(1) ∂N = (∂M) ∩N ;
(2) For all p ∈ N , there exists (φ,U) ∈ αr such that N ∩ U = φ−1(Rn × {0}).

4It is done in “Analytic extensions of differential functions defined in closed sets” by Whitney.
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Example 1.58. Consider the following C1-submanifold of B1(0) shown as (A), (B), (C), (D). The subman-
ifolds are indicated with dash lines. The submanifolds contain the point where it intersects the boundary of
B1(0). In (C), the other end of the line is open; in (D), the line is closed. Only (A) shows a neat submanifold.
(B) fails both two requirements in definition 1.57; (C) only fails definition 1.57 (2); (D) only fails definition
1.57 (1).

A B C D

Definition 1.59. A Cr-embedding is called neat if the image is a neat Cr-submanifold.

Example 1.60. The embedding from [−1, 1] to the submanifold in graph (A) is a neat embedding.

Theorem 1.61. Let Mn be a Cr-compact manifold, then there exists a neat Cr-embedding into R2n× [0,∞).
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2. Approximation

Definition 2.1. Let X be a topological space and A = (Ai)i∈I be a family of subsets of X.
(a) A is called a covering of X if X =

⋃
i∈I Ai. If all Ai is open, then it is called an open covering.

(b) A is called locally finite if for all x ∈ X, there exists U an open neighbourhood of X such that

|{i ∈ I | Ai ∩ U ̸= ∅}| <∞
(c) Let A and B = (Bj)j∈J be coverings of X. B is called a refinement of A if for all j ∈ J , ∃i ∈ I such

that Bj ⊆ Ai, and B is called a shrinking of A if J = I and Bj ⊆ Aj .

Definition 2.2. Let U = (Ui)i∈I be an open covering of a topological space X. A family Λ = (λi)i∈I where
λi ∈ C(X, [0, 1]) is called a partition of unity subordinated to U if

(a) ∀i ∈ I, supp(λi) = {x ∈ X | λi(x) ̸= 0} ⊂ Ui;
(b) supp (λi)I is locally finite;
(c) ∀x ∈ X ′,

∑
i∈I λi(x) = 1.

Remark 2.3. Partition of unity provides a way to build a global function out of local components. Also,
given an open cover A with a partition of unity Λ, then (int (supp (λi)))I is a locally finite cover.

Proof. ∀x ∈ X, since
∑
i∈I λi(x) = 1, there exists i0 ∈ I such that λi0(x) > 0. Therefore x ∈ λ−1

i0
((0, 1]) ⊆

int (supp (λi)). Since (supp (λi))I is locally finite, int (supp (λi))I is locally finite. □

Example 2.4. (a) Suppose X = R, A = {R}, then Λ = {1R} is a partition of unity.
(b) Suppose X = S1, U1 = S1\{−1}, U2 = S1\{1}, A = {U1, U2}. Then let

λ̃1(exp(iθ)) = exp

(
1

(θ − π/4)(θ − 7π/4)

)
, θ ∈ (π/4, 7π/4) (takes 0 otherwise)

and

λ̃2(exp(iθ)) = exp

(
1

(θ − 3π/4)(θ + 3π/4)

)
, θ ∈ (−3π/4, 3π/4) (takes 0 otherwise)

Suppose for x ∈ S1,

λi(x) =
λi(x)

λ̃1(x) + λ̃2(x)

then the support of λi is just supp(λ̃i(x)) ⊆ Ui, and since λ1 + λ2 = 1, they constitutes a partition of unity.

Theorem 2.5. Let M be a Cr-manifold, then every open cover of M has subordinate partition of unity.

Proof. Let U = (Ui)I be an open cover of M . By lemma 2.7, one may take (φα, Vα)α∈A a locally finite atlas
such that (Vα)α∈A refines U and φα(Vα) ⊂ Rn is bounded and each Vα is compact. By lemma 2.8, there is
a shrinking {Wα}α∈A of V = {Vα}α∈A, and each Wα ⊂ Vα is compact. By lemma 2.6, it suffices to find a
Cr partition of unity subordinate to V.

For each α ∈ A, cover the compact set φα(Wα) by a finite number of closed balls B(α, 1), · · · , B(α, k(α))
contained in φα(Vα). Choose C

∞ bump functions λα,j : Rn → [0, 1] for j = 1, · · · , k(α) such that λα,j(x) > 0
iff x ∈ intB(α, j). Put

λα =

k(α)∑
j=1

λα,j : Rn → [0,∞)

then λα(x) > 0 if x ∈ φα(Wα) and λα(x) = 0 if x ∈ Rn\
⋃
j B(α, j). Put µα :M → [0,∞):

µα(x) =

{
λα(φα(x)), x ∈ Vα

0, x ∈M\Vα
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then µα is Cr, µα > 0 on Wα, and suppµα ⊂ Vα. Then να = µα/
∑
α µα is a partition of unity on V. □

Lemma 2.6. Let B and A be open covers of X such that A refines B. Then B has a partition of unity if A
has one.

Proof. Let (λi)I be a partition of unity subordinated to A. Since A refines B, suppose a map f : I → J
such that Ai ⊆ Bf(i). Put Mj =

∑
i∈f−1(j) λj . Claim that Mj is a partition of unity on B.

Since supp (Mj) ⊆
⋃
i∈f−1(j) supp (λi) ⊆

⋃
i∈f−1(j)Ai ⊆ Bj and∑

j∈J
Mj(x) =

∑
j∈J

∑
i∈f−1(j)

λi(x) =
∑
i∈I

λi(x) = 1

Mj satisfies definition 2.2 (a) (c). For definition 2.2 (b), note that there exists an open neighbourhood U for
any x ∈ X such that S = {i ∈ I | U ∩ supp (λi) ̸= ∅} is finite. Take j ∈ J such that supp (Mj) ∩ U ̸= ∅,
then ∃i ∈ I such that f(i) = j and supp (λi) ∩ U ̸= ∅. Thus i ∈ S, and therefore j = f(i) ∈ f(S), where
f(S) is finite. □

Lemma 2.7. Suppose U = (Ui)I is an open cover of M . Then there is a locally finite atlas (φα, Vα)α∈A
such that:

(1) (Vα)α∈A refines U ;
(2) φα(Vα) ⊂ Rn is bounded and Vα ⊂M is compact for each α ∈ A.

Proof. For each x ∈ M , suppose x ∈ (Ui, φi), then there exists ε such that Bε(φi(x)) ⊂ φi(Ui). Then put
Wx,i = φ−1

i (Bε/2(φi(x))) and W = (Wx,i)M×I , it is clear that W covers M . Since M is paracompact, there
is a locally finite refinement V of W. It is easy to verify that V is the cover required. □

Lemma 2.8 (Shrinking lemma). Let X be a T4 topological space, and let (Ui)I be a point finite open cover.
Then it has a shrinking.

Proof. Consider the set S of pairs (J,V) consisting of a subset J ⊂ I and an I-indexed set of open subsets
V = {Vi}I with the property that:

(1) (i ∈ J ⊂ I) ⇒ (Vi ⊂ Ui);
(2) (i ∈ I\J) ⇒ (Vi = Ui);
(3) {Vi}i∈I is an open cover of X.
Equip the set S with a partial order ≤ by setting

(J1,V) ≤ (J2,W) ⇔ (J1 ⊂ J2,∀i∈J1(Vi =Wi))

then an element of (S,≤) with J = I would be the shrinking required. First, claim that a maximal element
of (S,≤) has J = I. For assume on contrary that there were i ∈ I\J . By lemma 2.9, one may replace that
single Vi with a smaller open set V ′

i to obtain V ′, then (J,V) < (J ∪ {i},V ′), contradiction.
Now show that the maximal element exists. By Zorn’s lemma, one need to check that every totally ordered

subset in (S,≤) has an upper bound. Let T ⊂ S be one such subset. Suppose K =
⋃

(J,V)∈T J , and define

W = (Wi)I as following:
(1) For i ∈ K, pick any (J,V) in T with i ∈ J and set Wi = Vi. This is well defined by the assumption

that T is totally ordered.
(2) For i ∈ I\K define Wi = Ui.
If (K,W) ∈ S, then it is a upper bound of T by construction. Thus it remains to show that (K,W) ∈ S,

i.e. (Wi)I is a cover of X.
Take any x ∈ X, for all t = (J,V) ∈ T , denote J = Jt, V = Vt = (V it )I . Suppose Sx(t) = {i ∈ I | x ∈ V it }.

Since (Ui)I is a point finite cover, Vt is also a point finite cover, therefore 0 < |Sx(t)| < ∞. It is also
clear that if t1 ≤ t2, then Sx(t2) ⊆ Sx(t1). By lemma 2.10,

⋂
t∈T Sx(t) ̸= ∅. Since Wi can be written as
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Wi =
⋂
t∈T V

i
t , it immediately follows that

⋂
t∈T Sx(t) = {i ∈ I | x ∈ Wi} ≠ ∅. Therefore x ∈ ∪i∈IWi,

hence (K,W) is indeed an element of S. □

Lemma 2.9. Let X be a T4 topological space and let {U1, U2} be an open cover. Then there exists an open
set V1 ⊂ X whose closure is contained in U1 and such that {V1, U2} is still an open covering of X.

Proof. Since X = U1 ∪ U2, X\Ui are disjoint closed subsets. Since X is T4, there exist disjoint open sets
X\U2 ⊂ V1 and X\U1 ⊂ V2, and V1 ⊂ X\V2 ⊂ U1. Since X\V2 is closed, V1 ⊂ U1. □

Lemma 2.10. Suppose a totally ordered set T , and sets St for t ∈ T such that: (1) 0 < |St| < ∞ for each
t ∈ T ; (2) St2 ⊆ St1 if t1 ≤ t2; then

⋂
t∈T St ̸= ∅.

Proof. Claim that there exists t0 such that |
⋂
t∈T St| = |St0 |. For assume on contrary that such t0 does

not exist. Then for any t1 ∈ T , there always exists t2 ∈ T with t2 ≥ t1 such that |St2 | < |St1 |. Since
0 < |St1 | <∞, contradiction. □

Definition 2.11. Suppose 0 ≤ r < ∞. The weak topology on Cr(M,N) is the coarest topology containing
the sets Nr(f, (φ,U), (ψ, V ),K, ε) for f ∈ Cr(M,N), (φ,U) ∈ αr, (ψ, V ) ∈ βr such that K ⊆ U, f(K) ⊂ V
and ε > 0. Nr(f, (φ,U), (ψ, V ),K, ε) is a collection of g ∈ Cr(M,N) such that

(1) g(K) ⊂ V ;
(2) ||D(k)(ψ ◦ f ◦ φ−1)(x)−D(k)(ψ ◦ g ◦ φ−1)(x)||k < ε for all x ∈ φ(K) and k = 0, · · · , r.

Remark 2.12. (a) Recall the norm || · ||k : L(Rm, L(Rm, · · · , L(Rm,Rn))) → R can be taken as

||F ||k =
∑

(i1,··· ,ik)∈{1,··· ,m}k

|F (ei1)(ei2) · · · (eik)|

for example, for f ∈ C2(Rm,R),

||D(0)(f)(x)||0 = |f(x)|, ||D(1)(f)(x)||1 =

m∑
i=1

∣∣∣∣ ∂f∂xi (x)
∣∣∣∣ , ||D(2)(f)(x)||2 =

m∑
i=1

n∑
j=1

∣∣∣∣ ∂2f

∂xi∂xj
(x)

∣∣∣∣
(b) Suppose M = R, f ∈ C2(R,R), f(x) = x2, g(x) = x2 + x3/1000, K = [−1, 1], and (φ,U) = (ψ, V ) =

(id,R). Then g ∈ N2(f,K, 1/100) but g ̸∈ N2(f,K, 1/200).
(c) The weak topology does not control the behavior at infinity, since it only concerns compact sets.

Definition 2.13. The strong topology is the coarest topology containing the sets

Nr(f,Φ,Ψ,K, ε) =
⋂
i∈I

Nr(f, (φi, Ui), (ψi, Vi),Ki, εi)

where Φ = (φi, Ui)I is a locally finite family of Cr-charts of M , Ψ = (ψi, Vi)I is a set of Cr-charts of N ,
K = (Ki)I with Ki ⊆ Ui and compact, ε = (εi)I with εi > 0, and f ∈ Cr(M,N) with f(Ki) ⊆ Vi for all
i ∈ I.

Remark 2.14. Denote the weak and strong topology on Cr(M,N) with Crw(M,N) and Crs (M,N). The
r = ∞ and r = w case will be defined in definition 2.16.

Example 2.15. (a) Suppose M = N = R, δ > 0, I = Z, (φi, Ui) = (id, (2i, 2i + 1)), (ψi, Vi) = (id,R),
Ki = [2i + δ, 2i + 1 − δ], f ∈ Cr(M,N), and ε = (εi)Z where εi → 0. Let g be the function shown in the
following graph, then g ∈ N0(f,Φ,Ψ,K, ε) but g ̸∈ N1(f,Φ,Ψ,K, ε), since supx∈K−1

|g′(x)− f ′(x)| ≥ ε−1.

(b) C0
s (R,R) and C0

w(R,R) are not the same as C0
||·||∞(R,R). To see this, consider fn(x) = 1/n, then

fn → 0 in C0
||·||∞(R,R), but fn ̸→ 0 in C0

s (R,R) since for all n ∈ N, fn ̸∈ N(0,Φ,Ψ,K, ε) where (φi, Ui) =



DIFFERENTIAL TOPOLOGY 16

(id, (2i, 2i + 1)), (ψi, Vi) = (id,R) and Ki = [2i + 1/4, 2i + 3/4], εi = 1/(1 + |i|). For the weak topology,
construct a sequence of bump functions that supported by [n, n+ 1].

(c) If ∂M = ∂N = ∅, then embr(M,N) is open in Crs (M,N), but wrong for the weak topology.

Definition 2.16. The weak topology on C∞(M,N) is defined to be the coarest topology such that all the
inclusions C∞(M,N) ↪→ Cr(M,N) for 0 ≤ r < ∞ are continuous. The strong topology on C∞(M,N)
is defined similarly. The weak and strong topology on Cw(M,N) is the subspace topology induced from
C∞(M,N).

Proposition 2.17. Let M,N be smooth manifolds and M be compact. Then the strong and weak topology
on Cr(M,N) coincide.

Proof. If U ⊂ Cr(M,N) is open in the weak topology, it is open in the strong topology by definition. For
the inverse implication, suppose a base for the strong topology Nr(f,Φ,Ψ,K, ε). Since Φ = (φi, Ui)I is
a locally finite family of charts, for any x ∈ M , there exists Nx an open neighbourhood of x such that
Ix = {i ∈ I | Nx ∩ Ui ̸= ∅} is finite. Since M is compact, there exists x1, · · · , xn such that M =

⋃n
i=1Nxi

.
Then I =

⋃n
i=1 Ixn

is also finite. Therefore Nr(f,Φ,Ψ,K, ε) =
⋂n
i=1N

r(f, (φi, Ui), (ψi, Vi),Ki, εi) is an
open set in the weak topology. □

Proposition 2.18. Suppose 0 ≤ r < t, M , N smooth manifolds and U is an open subset of Crs (M,N), then
Ct(M,N) ∩ U is open in Cts(M,N).

Proof. For all f ∈ Cts(M,N) ∩ U , since U is open in Crs (M,N), there exists Nr(f,Φ,Ψ,K, ε) ⊂ U . By

N t(f,Φ,Ψ,K, ε) ⊂ Nr(f,Φ,Ψ,K, ε) ∩ Cts(M,N)

one gets N t(f,Φ,Ψ,K, ε) ⊂ U ∩ Cts(M,N). □

Remark 2.19. For r ≥ 1, denote immr(M,N), submr(M,N), embr(M,N), embrc(M,N), diffr(M,N) to be
the set of Cr immersions, submersions, embeddings, closed embeddings and diffeomorphisms from M to N
respectively.

Theorem 2.20. Suppose M,N are Cr-manifolds and r ≥ 1, then:
(a) immr(M,N) is open in Crs (M,N).
(b) submr(M,N) is open in Crs (M,N).
(c) Suppose ∂M = ∂N = ∅, then diffr(M,N) is open in Crs (M,N).

Proof. (a) Since immr(M,N) = imm1(M,N) ∩ Cr(M,N), it suffices to prove that imm1(M,N) is open.
Suppose f : M → N is a C1 immersion, choose a neighbourhood N1(f,Φ,Ψ,K, ε) as follows. Let Ψ0 =
{ψβ , Vβ}β∈B be any atlas for N . Pick an atlas Φ = {φi, Ui}i∈I for M so that each Ui has compact closure,
and for each i ∈ I there exists βi ∈ B such that f(Ui) ⊆ Vβi

. Put Vβi
= Vi, ψβi

= ψi and Φ = {ψi, Vi}i∈I .
Let K = (Ki)i∈I be a compact cover of M with Ki ⊂ Ui. Endow the set L(Rm,Rn) with the topology
induced by the metric || · ||1. Then set

Ai = {D(ψi ◦ f ◦ φ−1
i )(x) ∈ L(Rm,Rn) | x ∈ φi(Ki)}

is a compact set since the map f : Ki → Ai, x 7→ D(ψi ◦ f ◦ φ−1
i )(x) is a continuous surjective map. Denote

I to the set of all injective linear maps from Rm to Rn, then I is open in L(Rm,Rn) = L, and Ai ⊂ I.
Claim that d(Ai, L\I) > 0. For assume on contrary d(Ai, L\I) = 0. Then for all ε > 0, there exists a ∈ Ai

and t ∈ L\I such that 0 < d(a, t) < ε. Take εn = 1/n for n ∈ N+, then for each n there are an ∈ Ai and
tn ∈ L\I such that 0 < d(an, tn) < 1/n. Since Ai is compact, the sequence an has a convergent subsequence
ani for i ∈ N+. Denote a0 = limi→∞ ani , then 0 ≤ d(a, tni) ≤ d(a, ani) + d(ani , tni), hence d(a, tni) → 0 as
i→ ∞. Thus limi→∞ tni = a. Since L\I is closed, a ∈ L\I, contradiction.
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Since d(Ai, L\I) > 0, take εi such that d(Ai, L\I) > εi. Then for all T ∈ L, if ||T − S|| < εi for some
S ∈ Ai, then T ∈ I. Let ε = (εi)I , then N

r(f,Φ,Ψ,K, ε) ⊂ imm1(M,N).
The same argument goes for (b). For (c), observe that when ∂M = ∂N = ∅, diffr = embrc(M,N) ∩

submr(M,N) is a intersection of two open maps by remark 2.21 (b). □

Remark 2.21. (a) Theorem 2.20 (c) is wrong if manifolds with boundaries are considered. Take M = N =
[0, 1], f = idM and gδ(x) = δ+x(1− 2δ). Then limδ→0 gδ = f ∈ C1

s (M,N). But gδ is not a diffeomorphism.
From now on, only consider manifolds without boundary.

(b) embr(M,N), embrc(M,N) are also open in Crs (M,N). But I have not had time to look into it.

Definition 2.22. Let U ⊆ Rm open and σ > 0 such that U contains a closed ball of radius σ. Suppose a
bump function θ ∈ C∞(Rm, [0,∞)) such that supp θ ⊂ Bσ(0) ⊂ Rm and Uσ = {x ∈ U | Bσ(x) ⊂ U}. Define
a map C0(U,Rn) → C∞(Uσ,Rn) via f 7→ θ ∗ f , where

(θ ∗ f)(x) =
∫
Bσ(x)

θ(x− y)f(y)dy

the map θ ∗ f is called convolution of θ with f . A map θ ∈ C∞(Rm, [0,∞)) with support in Bσ(0) (σ > 0)
is called a convolution kernel if

∫
Rm θ(y)dy = 1.

Remark 2.23. (a) Let f ∈ Cr(U,Rn) and K ⊂ U be compact. Denote

||f ||r,k = sup{||Dk(f)(x)|| | x ∈ K, k = 0, · · · , r}
(b) In analysis it is shown that Dk(θ ∗ f) = Dk(θ) ∗ f .
(c) Suppose f ∈ Ck(U,Rm), then Dk(θ ∗ f) = θ ∗Dk(f) because by substituting z = x− y, one obtains

(θ ∗ f)(x) =
∫
Bσ(0)

θ(z)f(x− z)dz

Proposition 2.24. Let U ⊆ Rm be open, nonempty, K ⊂ U compact and f ∈ Cr(U,Rn) with 0 ≤ r ≤ ∞.
Suppose ε > 0, then there exists σ > 0 such that: (1) K ⊂ Uσ; (2) for all convolution kernel θ with
supp (θ) ⊂ Bσ(0), ||θ ∗ f − f ||r,k < ε.

Proof. Suppose W open such that K ⊂ W ⊂ W ⊂ U where W is compact by taking W to be the union of
finitely many open balls. Since f |W is continuous and W is compact, f is uniformly continuous on W . Then

there exists σ > 0 such that for all x, y ∈W with |x− y|2 < σ, one has |f(x)− f(y)|2 < ε/2. Take σ smaller
than d(K,U\W ) and x ∈ K, then

|θ ∗ f(x)− f(x)|2 =

∣∣∣∣∣
∫
Bσ(0)

θ(y)f(x− y)dy − f(x)

∫
Bσ(0)

θ(y)dy

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
Bσ(0)

θ(y)(f(x− y)− f(x))dy

∣∣∣∣∣
2

≤
∫
Bσ(0)

θ(y)
∣∣(f(x− y)− f(x))

∣∣
2
dy ≤ ε/2

Thus the proposition is true for k = 0. For k ≥ 1, since Dk(θ∗f) = θ∗Dk(f), the same argument applies. □

Theorem 2.25. Let M and N be Cs-manifolds with 1 ≤ s ≤ ∞, then Cs(M,N) is dense in Crs (M,N) for
0 ≤ r < s.

Sketch proof. Unfinished! □



DIFFERENTIAL TOPOLOGY 18

Theorem 2.26. Let (M,αr) be a Cr-manifold with 1 ≤ r < ∞. For every s, r < s ≤ ∞, there exists a
compactible Cs-differential structure β ⊂ αr, and β is unique up to Cs-diffeomorphism.

Proof. First show uniqueness. Let β and γ be Cs-differential structures in αr. Then diffr((M,β), (M,γ)) =
diffr((M,αr), (M,αr)). Since id ∈ diffr((M,αr), (M,αr)), diffr((M,β), (M,γ)) ̸= ∅. By theorem 2.20,
diffr(M,M) is open in Crs (M,M). By theorem 2.25, Cs((M,β), (M,γ)) is dense in Crs (M,M). Therefore
diffs((M,β), (M,γ)) = diffr(M,M) ∩ Cs((M,β), (M,γ)) ̸= ∅.

For convenience denote a differential structure and its restriction to an open set the same symbol. By
Zorn’s lemma there is a nonempty open set B ⊂ M and a Cs differential structure β ⊂ αr on B such
that (B, β) is maximal in the partial order given by inclusions. To show the existence of a Cs-differential
structure, claim that B =M .

For assume on contrary B ̸= M . Then there exists a chart (φ,U) ∈ αr such that U ∩ (M\B) ̸= ∅. If
U ∩ B = ∅, then β ∪ {(φ,U)} is a Cs-atlas and B ⊊ B ∪ U , contradicting the assumption that (B, β) is
maximal.

So W = B ∩ U ̸= ∅. Then W ⊆ U open and there exists N ⊆ Crs (W,φ(W )) open such that T : N →
Crs (U,φ(U)) is continuous by lemma 2.27 (with f = φ here). Thus N ′ = T−1(diffr(U,φ(U))) is open. By
the definition of T , N ′ ⊆ diffr(W,φ(W )). Since φ ∈ N ′, N ′ is nonempty. Since Cs(W,φ(W )) is dense in
Crs (W,φ(W )), N ′∩Cs(W,φ(W )) ̸= ∅. Suppose φ0 ∈ N ′∩Cs(W,φ(W )), then β∪{(U, T (φ0))} is a Cs-atlas
and B ⊊ B ∪ U , contradiction. □

Lemma 2.27. Let U be a Cr-manifold, 0 ≤ r < ∞, and W ⊂ U an open set. Let V ⊂ Rn be open,
f ∈ Crs (U, V ), and put f(W ) = V ′. Then there is a neighbourhood N ⊂ Crs (W,V

′) of f |W such that if
g0 ∈ N , the map

T (g0) = g : U → V

g(x) =

{
g0(x), x ∈W

f(x), x ∈ U\W

is Cr, and T : N → Crs (U, V ) is continuous.

Proof. Let (φi, Ui)I be a locally finite family of charts of U which covers bdW the boundary of W in U .
W.l.o.g assume that every Ui is compact. Choose a shrinking (Li)I of (Ui)I . Define N ⊂ Crs (W,V

′) as
follows:

N = {h ∈ Cr(W,V ′) | ∀i∈I∀y∈φi(Li∩W )∀k=0,··· ,r||Dk(h ◦ φ−1
i )(y)−Dk(f ◦ φ−1)(y)||k < d(y, φi(Ui\W ))}

claim that N is an open neighbourhood of f |W . Since (Li)I is locally finite, take (Kw)W such that each
Kw meets only finitely many Li, and then replace it with a shrinking. Since {Kβ} ∪ {U} is a cover of U ,

by paracompactness W has a locally finite open cover {Kα} such that each Kα meets only finitely many
Li. Then the map d : Kα ∩ Li → R, x 7→ d(φi(x), φi(Ui\W )) is bounded away from 0, since (1) Kα ∩ Li is
disjoint from Ui\W , (2) Ui\W is closed in Ui, and Kα ∩ Li is compact in Ui, and then metric argument in
2.20 (a) applies. Thus N is indeed an open neighbourhood.

Now show that the g is Cr. It suffices to prove that λi : φi(Ui) → Rn

λi(x) =

{
h ◦ φ−1

i (x)− f ◦ φ−1
i (x), x ∈ φi(W )

0, x ∈ φi(Ui\W )

is Cr. Obviously λi is C
r in φi(W ). For the boundary points φi(bdW ), notice that for 0 ≤ k ≤ r, by the

definition of N , as d(y, φi(Ui\W )) → 0, Dk(λi)(y) → 0 uniformly for y ∈ φi(W ). Therefore g is indeed Cr.
Finally show that T is continuous. Suppose a topological base Nr(g,Φ,Ψ,K, ε) ⊂ Crs (U, V ). Take a

locally finite open cover (Wj)J of W and a compact refinement (W ′
j)J , then Φ′ = (φi, Ui ∩ Wj)I×J is
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still a locally finite family of charts. Then take K ′
i,j = Ki ∩ W ′

j , ε
′
i,j = εi and Ψ′

i,j = (ψi, Vi), one has

T−1(Nr(g,Φ,Ψ,K, ε)) = Nr(g|W ,Φ′,Ψ′,K ′, ε′). □

Example 2.28. Suppose M = R with C1-structure given by {(id, (−1,∞)), (f, (−∞, 1))} with

f(x) =

{
(x+ 1/2)2 − 1/4, 0 ≤ x < 1

1/4− (1/2− x)2, x < 0

it is not a C2-atlas because f ◦ id−1 on (−1, 1) is not C2 at 0. To get a C2-atlas, modify f on (−1, 1): define

f̃(x) =

{
1/4− (1/2− x)2, x < 0

2x3/3− x2 + x, 0 ≤ x < 1

Now {(id, (−1,∞)), (f̃ , (−∞, 1))} is a C2-structure that is contained in the previous C1-structure.
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3. De Rham Complex

Definition 3.1. Let U , V be R-vector spaces. Then then a pair (E,⊗) is called the tensor product of
U , V if E is an R-vector space and ⊗ is a bilinear map from U × V to E such that for any bilinear map
f : U × V → Z, there is a unique linear map g : E →W such that g ◦ ⊗ = f , i.e. the following diagram

U × V Z

E

f

⊗
g

commutes. This is also called the universal property of tensor products.

Proposition 3.2. Let U, V be real vector spaces. Suppose there are two tensor products (E1,⊗1), (E2,⊗2)
for them, then there is a linear isomorphism such that f ◦ ⊗1 = ⊗2.

Proof. By the universal property of ⊗1 and ⊗2, one gets the unique linear maps f and g from the following
commutative diagram:

E1

U × V E2

E1

⊗2

⊗1
f

⊗1
g

idE1

then g ◦ f is an unique map from E1 → E1, thus g ◦ f = idE1
. By interchanging the indices in the above

commutative diagram, one also gets f ◦ g = idE2
. Therefore f is indeed an isomorphism. □

Remark 3.3. Because of proposition 3.2, one can talk about the tensor product of U and V , say U ⊗ V .

Proposition 3.4. Let U, V be real vector spaces, then their tensor product exists.

Proof. Let T be the real vector space generated by the collection pairs T0 = {(u, v) | u ∈ U, v ∈ V }. Then
the elements of T , say t, can be written as the finite sum of elements in T0, i.e.

t =

n∑
i=1

ai(ui, vi), ai ∈ R, ui ∈ U, vi ∈ V

Put
S1 = {(au1 + u2, v)− a(u1, v)− (u2, v) | a ∈ R, u1, u2 ∈ U, v ∈ V }
S2 = {(u, av1 + v2)− a(u, v1)− (u, v2) | a ∈ R, u ∈ U, v1, v2 ∈ V }

and let S be the subspace of T generated by S1 ∪S2. Let E = T/S, and f : U × V → E, (u, v) → (u, v) +S.
Claim that (E,⊗) is a tensor product. First observe that

f(au1 + u2, v) = (au1 + u2, v) + S = a(u1, v) + (u2, v) + S = af(u1, v) + f(u2, v)

Similarly f(u, av1 + v2) = af(u, v1) + f(u, v2). Therefore f is a bilinear map. Now verify the universal
property. Suppose g : U × V → Z a bilinear map, let h : E → Z be a map such that g = h ◦ f . Then h
must sends f(u, v) to g(u, v). Since T0 is a basis of T , f(u, v) spans the quotient space T/S. Therefore h is
uniquely determined via linear extension. Observe that

h(af(u1, v) + f(u2, v)) = h(f(au1 + u2, v)) = g(au1 + u2, v) = ah(f(u1, v)) + h(f(u2, v))

and the same argument goes for the case where one fixes u, therefore h is well-defined. □
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Definition 3.5. Let V be a real vector space. Then the wedge product of V is

V ∧ V = V ⊗ V/span{v ⊗ v | v ∈ V }
where the canonical projection is denoted by ∧ : (u, v) 7→ u ∧ v.

Proposition 3.6. Let V be a real vector space. Then for all skew-symmetric linear maps f : V × V → Z,
there is a unique linear map g : V ∧ V → Z such that g ◦ ∧ = f , i.e. the diagram

V × V Z

V ∧ V

f

∧ g

commutes.

Proof. This immediately follows from the universal property of quotient spaces and the universal property
of tensor products. □

Remark 3.7. Denote Ak(V ) to be the collection of skew-symmetric k-linear maps. Define the wedge product
on Ak(V ) via

∧ : Ak(V )×Al(V ) → Ak+l(V )

(a ∧ b)(v1, · · · , vk+l) =
1

k!l!

∑
σ∈Sk+l

sgn(σ)a(vσ(1), · · · , vσ(k))b(vσ(k+1), · · · , vσ(k+l))

There is still some calculations left undone here.

Proposition 3.8. Let V be a finite dimensional real vector space, then e∗i1 ∧ · · · ∧ e∗ik is a basis for Ak(V ),
where {e1, · · · , en} is a basis for V and 1 ≤ i1 ≤ · · · ≤ ik ≤ n.

Proof. Put I = (i1, · · · ik), write eI for (ei1 , · · · eik) and e∗I for e∗i1 ∧ · · · ∧ e∗ik . Then obviously

e∗I(eJ) =

{
1, I = J

0, I ̸= J

First show linear independence. Suppose
∑
I cIe

∗
I = 0, then by acting eJ on both sides one gets cJ = 0.

Then show e∗I spans the whole space. Suppose f ∈ Ak(V ), put g =
∑
I f(eI)e

∗
I , then

g(eJ) =
∑
I

f(eI)e
∗
I(eJ) = f(eJ)

therefore g and f agrees on all eI . By k-linearity and the alternating property, f = g. Therefore it is indeed
a basis. □

Proposition 3.9. Let V be a finite dimensional real vector space, then Ak(V ) ∼=
∧k

(V ∗) via f :
∧k

(V ∗) →
Ak(V ), e∗i1 ∧ · · · ∧ e∗ik 7→ e∗i1 ∧ · · · ∧ e∗ik .

Proof. This immediately follows from the fact that f maps the basis of
∧k

(V ∗) to the basis of Ak(V )
one-to-one. □

Remark 3.10. LetM and N be manifolds, and f :M → N be a C∞-map, take charts (φ = (x1, · · · , xm), U),
(ψ = (y1, · · · , yn), V ) of M and N respectively such that f(U) ⊂ V . Then for p ∈ U ,(

Tpf

(
∂

∂x1
(p)

)
, · · · , Tpf

(
∂

∂xm
(p)

))
=

(
∂

∂y1
(f(p)), · · · , ∂

∂yn
(f(p))

)
A(p)
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where A(p) =

[
∂fi
∂xj

(p)

]
1≤i≤n,1≤j≤m

, fi = yi ◦ f : U → R.

Proof. First, note that the tangent vectors
∂

∂xj
(p) has been identified with derivatives. Therefore

(A(p))ij =
∂fi
∂xj

(p) = (p) =
d(fi ◦ φ−1(tej + φ(p)))

dt

∣∣∣
t=0

=
∂(ψ ◦ f ◦ φ−1)i

∂xj
(φ(p))

and

(Tpf)

(
∂

∂xj
(p)

)
= (Tpf)([p, φ, U, ej ]) = [f(p), ψ, V,D(ψ ◦ f ◦ φ−1)(φ(p))ej ]

= [f(p), ψ, V,

n∑
i=1

ei
∂(ψ ◦ f ◦ φ−1)i

∂xj
(φ(p))]

= [f(p), ψ, V,

n∑
i=1

∂fi
∂xj

(p)ei] =

n∑
i=1

∂fi
∂xj

(p)[f(p), ψ, V, ei]

=

n∑
i=1

(A(p))ij
∂

∂yj
(f(p))

□

Definition 3.11. Let M be a manifold. A differential k-form on M is a map w : M →
∧k

(T ∗M) =

⊔p∈M
∧k

(T ∗
pM) such that w(p) ∈

∧k
(T ∗
pM) for all p ∈M .

Definition 3.12. Let f ∈ C∞(M,R), using the derivative Tf : TM → TR, one may obtain a 1-form as
follows:

TM TR R× R RTf ∼

where the last 2 maps are given by [p, id,R, v] 7→ (p, v) 7→ v. The map df : M → T ∗M is called the
differential of f .

Remark 3.13. Given coordinates φ = (x1, · · · , xm), by definition 3.12, one gets 1-forms dx1, · · · dxm. Then

(dx1)p, · · · (dxm)p is the dual basis of
∂

∂x1
(p), · · · , ∂

∂xm
(p).

Proof. Since

(Tpxi)(
∂

∂xj
(p)) = [xi(p), id,R, D(xi ◦ φ−1)(φ(p))ej ]

= [xi(p), id,R,
∂(πi ◦ φ ◦ φ−1)

∂xj
(φ(p))]

= [xi(p), id,R, δij ]

therefore (dxi)p

(
∂

∂xj
(p)

)
= δij . □

Definition 3.14. Let M be a manifold, then the cotangent bundle of M is

T ∗M =
⊔
p∈M

T ∗
pM = {(p, f) | p ∈M,f ∈ T ∗

pM}
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Remark 3.15. Give a differential structure on T ∗M using charts (φ = (x1, · · · , xm), U) of M via T ∗U →
Rm × Rm, (p,

∑m
i=1 λi(dxi)p) 7→ (φ(p), λ1, · · · , λm). It is easy to see that a smooth form must have smooth

coefficients under local trivializations. Moreover, define the tensor bundle of type (p, q): (TM)⊗p⊗(T ∗M)⊗q,

and the k-th exterior power of the cotangent bundle onM :
∧k

(T ∗M). Now consider the transition functions
of the tangent bundle and the cotangent bundle. By the definition of the tangent bundle, suppose coordinate
charts (x1, · · · , xm) = φ and (y1, · · · , ym) = ψ, since [p, φ, U, ej ] = [p, ψ, V,Dej ] (D is the jocabian),

∂

∂xj
(p) = D

∂

∂yi
(p) =

m∑
i=1

∂yi
∂xj

∂

∂yi
(p)

therefore

m∑
j=1

vj
∂

∂xj
(p) =

m∑
i=1

 m∑
j=1

vj
∂yi
∂xj

 ∂

∂yi
(p)

therefore transition function is (x, v) 7→ (ψ ◦φ−1(x), Dv). In the dual space, suppose (dxi)p = A(dyj)p, then

δij = (dxi)p

(
∂

∂xj
(p)

)
=
∑
k

Aik(dyk)p

(∑
l

Djl

(
∂

∂yl
(p)

))
=
∑
k,l

AikDjlδkl =
∑
k

AikDjk

therefore ADT = I, A = (DT )−1. By the same argument the transition function is (x, v) 7→ (ψ◦φ−1(x), Av).

Definition 3.16. A differential k-form w is said to be smooth if w ∈ C∞(M,
∧k

(M)).

Remark 3.17. Write Ωk(M) for the collection of all smooth differential k-forms for k = 1, 2, · · · . For k = 0,
Ω0(M) = C∞(M,R). They can be seen as R-vector spaces.

Example 3.18. (a) Find w ∈ Ω1(R2\{0}) which satisfies
w

(
−y ∂

∂x
+ x

∂

∂y

)
= 1,

w

(
x
∂

∂x
+ y

∂

∂y

)
= 0

To find such w, suppose anstaz w = adx+ bdy. Then{
−ay + bx = 1,

ax+ by = 0
⇐⇒


a =

−y
x2 + y2

,

b =
x

x2 + y2

therefore w =
xdy − ydx

x2 + y2
.

(b) There is a map d : Ω0(R2\{0}) → Ω1(R2\{0}), f 7→ df . Claim that w ̸∈ im (d). For assume on
contrary there exists f such that w = df . Then

df =
∂f

∂x
dx+

∂f

∂y
dy =

xdy − ydx

x2 + y2
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since dx, dy is a basis for each p ∈ M ,
∂f

∂x
=

−y
x2 + y2

and
∂f

∂y
=

x

x2 + y2
. Put g(t) = f(c(t)) where

c(t) = (cos t, sin t), then ∫ 2π

0

g′(t)dt =

∫ 2π

0

∇f(c(t)) · (c′(t))T dt =
∫ 2π

0

1dt = 2π

however by the fundamental theorem of calculus,∫ 2π

0

g′(t)dt = g(2π)− g(0) = f(0)− f(0) = 0

contradiction.
(c) There is another map d : Ω1(R2\{0}) → Ω2(R2\{0}) given by d(adx + bdy) = da ∧ dx + db ∧ dy, so

one has a chain

Ω0(R2\{0}) Ω1(R2\{0}) Ω2(R2\{0})d1 d2

this is called the de Rham complex of R2\0. Since

d(df) =
∂2f

∂x∂y
dx ∧ dy + ∂2f

∂y∂x
dy ∧ dx = 0

it is indeed a cochain complex. Also, since dw = 0, H1
dR(R2\{0}) = ker d1/im d0 is non-trivial. Claim that

H1
dR(R2\{0}) ∼= R via

Φ : [w] 7→ 1

2π

∫ 2π

0

w(c′(t))dt

By (b), since 1 ∈ imΦ, Φ is surjective. For the injectivity, one needs to show that if a form w ∈ Ω1(R\{0}) is
closed, and

∫ 2π

0
w(c′(t))dt = 0, then it is exact. Assume w = fdx+ gdy. Since w is closed, dw = 0, therefore

∂f
∂y (p) =

∂g
∂x (p) for all p ∈ R2\{0}, the integral over the boundary of a simply connected domain is always 0

by Green’s theorem. To emphasize that the vector line integrals does not depend on the parameterization,
denote

∫
C
w the integration of w counterclockwise along the curve C. Now for all p ∈ R2\{0}, put Cp a curve

that starts at (1, 0) and ends at p = (r cos θ, r sin θ) where r > 0 and θ ∈ [0, 2π) as follows: it first moves
from (1, 0) to (cos θ, sin θ) counterclockwise along the unit circle, then goes to p by the straitline connecting
the origin, p and (cos θ, sin θ). Put a(p) =

∫
Cp
w and claim that w = da. For p ∈ R2\0 that not on the

positive x-axis, say p = (x0, y0), define Ch to be the line that starts at p and ends at (x0 + h, y0). Since p is
not on the positive x-axis, h can always be taken so that Ch and C−h does not intersect the positive x-axis.
Then

∂a

∂x
(p) = lim

h→0

a(p+ (h, 0))− a(p)

h
= lim
h→0

∫
Ch
w

h
= lim
h→0

∫ h
0
f(x0 + x)dx

h
= f(p)

by the same argument one can show that ∂a
∂y = g. If p is on the positive x-axis, then by the same argument

the right derivative with respect to y is still g(p). For the left derivative, for a point (x0, h) = r(cos θ, sin θ),
take another path C ′

p from (1, 0) clockwise along the unit circle to (cos θ, sin θ), then again take the straitline

to (x0, h). Because the integration of w along the unit circle is zero,
∫
Cp
w =

∫
C′

p
w. Using this, one finds

lim
h→0−

a(p+ (0, h))− a(p)

h
= lim
h→0−

∫
C′

p+(0,h)

w −
∫
C′

p
w

h
= lim
h→0−

∫
Ch
w

h
= g(p)

therefore the derivative with respect to y is still well-defined and agrees with g on the positive x-axis.
Therefore w = df . For w = a(x, y)dx ∧ dy ∈ Ω2(R2\{0}), take f =

∫ x
0
a(x, y)dx, then d(fdy) = w, hence

H2
dR(R2\{0}) ∼= 0.
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(d) Find Ω1(S1). Consider S1 as a submanifold of R2, then TpS
1 =

{
a
∂

∂x
(p) + b

∂

∂y
(p) | axp + byp = 0

}
.

Therefore Ω1(S1) = C∞(S1,R)(−ydx+ xdy)|TS1 . Although all the differential forms on S1 comes from the
restrictions of differential forms on R2, this is not true in general for submanifolds. For example, (0, 1) is a
submanifold of R, and sin(1/x)dx is a differential form that cannot be extended to a form on R.

Definition 3.19. A quadruple (A,+ : A×A→ A, · : R×A→ A,⊙ : A×A→ A) is called an R-algebra if
(a) (A,+, ·) is an R-vector space;
(b) (A,+,⊙) is a ring;
(c) ∀r1, r2 ∈ R, and ∀a1, a2 ∈ A, (r1, a1)⊙ (r2, a2) = (r1r2)(a1 ⊙ a2).

Definition 3.20. Let A be an R-algebra, and let Ai ≤ A be sub-vector spaces for i ∈ N0, then A is called
a graded algebra with grading (Ai)N0

.

Definition 3.21. Let A be an R-algebra. An R-linear map D : A → A is called a derivation of A if it
satisfies the leibniz rule, i.e. D(ab) = D(a)b+aD(b). An R-linear map D : A→ A is called an anti-derivation
of A if it satisfies the leibniz rule for anti-derivations, i.e. for all a ∈ Ai, b ∈ A, D(ab) = D(a)b+(−1)iaD(b).

Example 3.22. (a) Ω∗(M) =
⊕∞

i=0 Ω
i(M) with ∧ is a graded algebra.

(b) D : Ω∗(Rn) → Ω∗(Rn) defined via D(
∑
I aIdx

I) =
∑
I daI ∧ dxI where I = (i1, · · · il) for 1 ≤ i1 <

· · · < il ≤ n and dxI = dxi1 ∧ · · · ∧ dxil is an anti-derivation that satisfies D|Ω0(Rn) = d and D ◦D = 0.

Proof. Since the wedge product and the differential d : C∞(Rm) → Ω1(Rn) is R-linear, D is R-linear. Now
check the leibniz rule of anti-derivations for D. One only needs to consider the elements of the form adxI

because of the additivity of D. Then

D(adxI ∧ bdxJ) = D(ab · sgn (ρ)dxI∪J) = sgn (ρ)d(ab) ∧ dxI∪J

= d(ab)dxI ∧ dxJ = ((da)b+ adb) ∧ dxI ∧ dxJ

= (da ∧ dxI) ∧ (bdxJ) + (−1)|I|adxI ∧ db ∧ dxJ

= D(adxI) ∧ (bdxJ) + (−1)|I|adxI ∧D(bdxJ)

thus D is indeed an anti-derivative. Obviously D|Ω0(Rn) = d by definition, and since

D(D(adxI)) = D(da ∧ dxI) = D

(
n∑
i=1

∂a

∂xi
dxi ∧ dxI

)

=

n∑
i=1

d

(
∂a

∂xi

)
∧ dxi ∧ dxI

=

n∑
j=1

n∑
i=1

∂2a

∂xi∂xj
dxj ∧ dxi ∧ dxI = 0

by linearity D ◦D = 0. □

Definition 3.23. Let f ∈ C∞(M,N) and w ∈ Ωk(N). Define f∗w ∈ Ωk(M) via

(f∗w)p(v1, · · · , vk) = wf(p)((Tpf)v1, · · · , (Tpf)vk)
it is called the pullback of w under f . f∗ : Ω∗(N) → Ω∗(M) is an R-algebra homomorphism.

Remark 3.24. Obviously there is (f ◦ g)∗ = g∗ ◦ f∗, and if f is a diffeomorphism, then f∗ is an isomorphism.
Also, f∗ has the local property, i.e. if w1 = w2 around f(p), then f∗w1 = f∗w2 around p.
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Definition 3.25. An exterior derivative on a manifold M is an R-linear map D : Ω∗(M) → Ω∗(M) which
satisfies:

(a) D is an anti-derivation;
(b) D ◦D = 0;
(c) D|Ω0(M) = d.

Theorem 3.26. Let M be a manifold, then there exists a unique exterior derivative on M .

Proof. First show uniqueness. Let D and D′ be exterior derivatives on M . Take a chart (φ,U) on M and
p ∈ U , then for w ∈ Ω∗(M), since D|U = D′

U by lemma 3.29,

D(w)(p) = D|U (w|U )(p) = D′
U (w|U ) = D′(w)(p)

therefore D = D′. For the existence, for every chart (φ,U), there is a unique exterior derivative Dφ(U) :
Ω∗(φ(U)) → Ω∗(φ(U)). Since φ∗ is an isomorphism, it uniquely induces an exterior derivative DU : Ω∗(U) →
Ω∗(U). Define D : Ω∗(M) → Ω∗(M) via D(w)(p) = DU (w|U )(p). Since DU is an exterior derivative, D is
also an exterior derivative. □

Lemma 3.27. Suppose U is an open set of Rm, then it has a unique exterior derivative.

Proof. The existence follows from example 3.22 (b). For the uniqueness, letD′ be another exterior derivative.
If w ∈ Ω0(U), then by definition 3.25 (3), D(w) = D′(w) = dw. Now assume D agrees with D′ for all

w ∈
⊕k

i=0 Ω
i(M), take adxI ∈ Ωk+1(M). Then

D′(adxI) = D′(a) ∧ dxI + (−1)0aD′(dxI) = da ∧ dxI + aD′(dxI)

= D(adxI) + aD′(dxI)

since

D′(dxI) = D′(D(xi1dx
I\{i1})) = D′(D′(xi1dx

I\{i1})) = 0

therefore D = D′ by induction. □

Lemma 3.28. Suppose M a manifold, p ∈ M , and D an exterior derivative on M . If there exists an
open set U of M with p ∈ U such that w|U = 0, then there exists an open neighbourhood U ′ of p such that
D(w)|U ′ = 0.

Proof. W.l.o.g. assume U is part of a chart (φ,U). Take λ : M → [0, 1] a C∞-map such that λ = 0 on U ′

and λ = 1 on M\U . (Just take U ′ small enough so U ′ ⊂ U , and take a bump function b such that b = 1 on
U ′ and b = 0 on M\U , then λ = 1− b). Then

D(w)|U ′ = D(λw)|U ′ = dλ ∧ w|U ′ + λ ∧D(w)|U ′

since w|U ′ = 0 and λU ′ = 0, D(w)|U ′ = 0. □

Lemma 3.29. Suppose (φ,U) a chart of M . Then an exterior derivative D on M uniquely induces an
exterior derivative DU on U .

Proof. Then define DU : Ω∗(U) → Ω∗(U) as follows: for w ∈ Ω∗(U), DU (w)(p) = D(λw)(p), where λ = 1
around p and λ = 0 onM\V such that p ∈ V ⊂ V ⊂ U . This is well-defined by lemma 3.28. DU is a exterior
derivative on Ω∗(U), since:

(1) DU ◦DU (w)(p) = DU (λDu(w))(p) = D(λD(λw))(p) = DD(λw))(p) = 0;
(2) Take w ∈ Ω0(U), then DU (w)(p) = D(λw)(p) = d(λw)(p) = dU (w)(p);
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(3) Suppose two bump functions λ1, λ2 around p, then λ = λ1λ2 is still a bump function around p. Then

DU (a ∧ b)(p) = D(λa ∧ b)(p) = D((λ1a) ∧ (λ2b))(p)

= (D(λ1a) ∧ λ1b+ (−1)deg aλ1a ∧D(λ2b))(p)

= (DU (a) ∧ b+ (−1)deg aa ∧DU (b))(p)

Therefore a exterior derivative D on M . Since U is diffeomorphic to φ(U), the following diagram commutes:

Ω∗(U) Ω∗(U)

Ω∗(φ(U)) Ω∗(φ(U))

DU

φ∗ p φ∗ p

Dφ(U)

since Dφ(U) is unique by lemma 3.27, DU is also unique. □

Definition 3.30. Let M be a manifold. The complex

0 Ω0(M) Ω1(M) · · · Ωm−1(M) Ωm(M) 0d(−1) d(0) d(m)

is called the de Rham complex of M , where d(i) = D|Ωi(M). Also define Zi(M) = ker(d(i)) the set of cocycles

or closed forms, and Bi(M) = im d(i−1) the set of coboundaries or exact forms. Hi
dR(M) = Zi(M)/Bi(M)

is called the i-th de Rham cohomology of M .

Example 3.31. Let M be a manifold with connected components Mi for i ∈ I, I is countable. Then
H0
dR(M) ∼= R|I|, because a function f ∈ C∞(M,R) with df = 0 is constant on every Mi.

Example 3.32. Consider the de Rham cohomology of S1:

0 Ω0(S1) Ω1(S1) 0d(0)

Since S1 is connected, H0
dR(S

1) ∼= R. Consider Φ : Ω1(S1) = Z1(S1) → R, with

Φ(w) =

∫ 2π

0

wc(t)(c
′(t))dt

where

c′(t) = (Ttc)

(
∂

∂t

)
= c′1(t)

∂

∂x
(c(t)) + c′2(t)

∂

∂y
(c(t))

also, im (d(0)) ⊂ kerΦ since∫ 2π

0

dfc(t)(c
′(t))dt =

∫ 2π

0

d(f ◦ c)t
(
∂

∂t
(t)

)
dt =

∫ 2π

0

(f ◦ c)′(t)dt

= (f ◦ c)(2π)− (f ◦ c)(0) = 0

and Φ is surjective since

Φ(−ydx+ xdy|TS1) =

∫ 2π

0

−c2(t)dxc(t)(c′(t)) + c1(t)dyc(t)(c
′(t))dt

=

∫ 2π

0

−c2(t)c′1(t) + c1(t)c
′
2(t)dt = 2π
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Now show kerΦ ⊂ im (d(0)): let w ∈ kerΦ, put f(c(t)) =
∫ t
0
wc(s)(c

′(s))ds, f is well-defined because
w ∈ kerΦ. Then

(df)c(t)(c
′(t)) = (dfc(t) ◦ Ttc)

(
∂

∂t
(t)

)
= d(f ◦ c)t

(
∂

∂t
(t)

)
= (f ◦ c)′(t) =

(∫ t

0

wc(s)c
′(s)ds

)′

= wc(t)(c
′(t))

since c′(t) is non-zero everywhere on S1, and Tc(t)S
1 is of dimension 1, df = w. Thus kerΦ = im (d(0)).

Therefore

R ∼= Z1(S1)/ kerΦ = Z1(S1)/B1(S1) = H1
dR(S

1)

now all the cohomology group of S1 is known.

Example 3.33 (Poincaré lemma). Suppose n ∈ N0, then

Hk
dR(Rn) =

{
R, k = 0

0, k ≥ 1

Proof. Since Rn is connected, H0
dR(Rn) ∼= R. For k ≥ 1, take w = adxi1 ∧ · · · ∧ dxik such that dw = 0, i.e.∑
j ̸∈{i1,··· ,ik}

∂a

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik = 0

thus for all j ̸∈ {i1, · · · ik},
∂a

∂xj
= 0, thus a only relies on xi1 , · · · , xik . Define

f(xi1 , · · · , xik) =
∫ xi1

0

a(xi1 , · · · , xik)ds

then d(fdxi2 ∧ · · · ∧ dxik) = a(xi1 , · · · , xik)dxi1 ∧ · · · ∧ xik . □

Remark 3.34. There are usually four tools for computing the de Rham cohomology:
(a) the Poincaré lemma;
(b) integration on manifolds;
(c) Mayer-Vietoris sequence;
(d) homotopy invariance.

Lemma 3.35. Let f ∈ C∞(M,N). Then the exterior derivatives dM and dN satisfy dMf
∗ = f∗dN , i.e. the

diagram

0 Ω0(M) Ω1(M) Ω2(M) · · ·

0 Ω0(N) Ω1(N) Ω2(N) · · ·

dM dM

dN dN

f∗ f∗ f∗

commutes.

Proof. For all w ∈ Ω∗(N), take any f(p) ∈ N , it can be written as linear combinations of adx1 ∧ · · · ∧ dxs
locally around f(p) (by taking charts). W.l.o.g assume w = adx1 ∧ · · · ∧ dxs, then the form w′ = ad(λx1) ∧
· · · ∧ d(λxs) agrees with w locally around f(p). Therefore f∗w = f∗w′ around p by the local property of f .
Since f∗ is an R-algebra homomorphism, one only needs to look at the differential forms in Ω0(N)∪B1(N).
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Suppose g ∈ Ω0(N), p ∈M , v =
∑m
i=1 vi

∂

∂xi
∈ Tp(M), then

f∗(dNg)p(v) = (dNg)(Tpfv) =

(
n∑
k=1

∂g

∂yk
dyk

) n∑
i=1

m∑
j=1

∂(ψ ◦ f ◦ φ−1)

∂xj
vj

∂

∂yi


=

n∑
i=1

m∑
j=1

∂g

∂yi

∂(ψ ◦ f ◦ φ−1)

∂xj
vj =

m∑
j=1

∂(g ◦ f ◦ φ−1)

∂xj
vj

= d(g ◦ f)p(v) = dM (f∗(g))p(v)

therefore f∗dNg = dMf
∗g. For the case where dNg ∈ B1(N), p ∈M , v ∈ Tp(M),

f∗(dNdNg) = f∗(0) = 0, dMf
∗(dNg) = dMdMf

∗(g) = 0

where the second equality used the result for g ∈ Ω0(N). □

Remark 3.36. Suppose f ∈ C∞(M,N), then f∗ induces a map Hk
dR(N) → Hk

dR(M) for k = 0, 1, 2, · · · .

Proof. By lemma 3.35, for k ≥ 0, one has f∗(im d
(i)
N ) ⊂ im d

(i)
M . Suppose w such that d

(i+1)
N w = 0, then

d
(i+1)
M (f∗w) = 0, therefore f∗(ker d

(i+1)
N ) ⊂ ker d

(i+1)
M . □

Lemma 3.37. Let M be a manifold. Consider the two maps fi : M → M × [0, 1] for i = 0, 1 with fi(p) =
(p, i). Then there exists a linear map L : Ω∗(M × [0, 1]) → Ω∗(M) such that f∗1 − f∗0 = dM ◦L+L ◦dM×[0,1],
i.e. the following non-commutative diagram:

· · · Ωk−1(M × [0, 1]) Ωk(M × [0, 1]) Ωk+1(M × [0, 1]) · · ·

· · · Ωk−1(M) Ωk(M) Ωk+1(M) · · ·

L(k)
L(k+1)

Proof. Suppose N = M × [0, 1]. Then there are maps: π1 : N → M, (p, s) 7→ p, π2 : N → [0, 1], (p, s) 7→ s,
and ι : M → N, p 7→ (p, 1). Since π ◦ ι = idM , π∗ : Ω∗(M) → Ω∗(N) is injective. Also, one has an
isomorphism Φ(p,s) = T(p,s)π1 ⊕ T(p,s)π2 : T(p,s)N → TpM ⊕ Ts[0, 1]. Take v ∈ TpM , define vector fields

Xv : [0, 1] → TN via Xv(s) = Φ−1
(p,s)(v, 0) and

∂

∂t
(p, s) = Φ−1

(p,s)

(
0,
∂

∂t
(s)

)
Then define L. For w ∈ Ωk(N), if k = 0, then L(w) = 0. Otherwise put

L(w)p(v1, · · · , vk−1) =

∫ 1

0

w(p,s)

(
∂

∂t
(p, s), Xv1(s), · · · , Xvk(s)

)
ds

By the definition of L, it is obvious that it has the local property, i.e. if there exists U ⊂M an open subset
and w1, w2 ∈ Ω∗(N) such that w1|U×[0,1] = w2|U×[0,1], then L(w1)|U = L(w2)|U . Then by the additivity

of L, one only needs to consider the case where w = adxI and w = adt ∧ dxI with a ∈ C∞(U × [0, 1],R)
compact supported (otherwise just multiply a bump function).

(a) Suppose w = a ∈ C∞
c (U × [0, 1],R), then

(f∗1 (a)− f∗0 (a))(p) = (a ◦ f1)(p)− (a ◦ f0)(p) = a(p, 1)− a(p, 0)

(dM ◦ L)(a) = dM (L(a)) = dM0 = 0
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(L ◦ dN )(a) = L

(
m∑
i=1

∂a

∂xi
dxi +

∂a

∂t
dt

)
(p) =

∫ 1

0

∂a

∂t
(p, s)ds = a(p, 1)− a(p, 0)

this verifies case (a).
(b) Suppose w = adxI where a ∈ C∞

c (U × [0, 1],R) and 1 ≤ |I| = k ≤ m. In this case, since
(dxj)(p,s)(

∂
∂t (p, s)) = 0, L(adxI) = 0. therefore

L ◦ dN (adxI) = L

(
∂a

∂t
dt ∧ dxI

)
Then take v1, · · · , vk−1 ∈ TpM ,

L

(
∂a

∂t
dt ∧ dxI

)
p

(v1, · · · , vk−1) =

∫ 1

0

∂a

∂t
(p, s)(dxI)(p,s)(Xv1(s), · · · , Xvk−1

(s))ds

=

(∫ 1

0

∂a

∂t
(p, s)ds

)
(dxI)p(v1, · · · , vk−1)

= (f∗1 (a)(p)− f∗0 (a)(p))(dx
I)p(v1, · · · , vk−1)

= (f∗1 (adx
I)− f∗0 (adx

I))p(v1, · · · , vk)

this concludes case (b).
(c) Suppose w = adt ∧ dxI , a ∈ C∞

c (U × [0, 1],R), since f∗i (dt) = 0,

f∗1 (w)− f∗0 (w) = f∗1 (adt) ∧ f∗1 (dxI)− f∗0 (adt) ∧ f∗0 (dxI) = 0

one also has

(dM ◦ L)(w)p(v1, · · · , vk−1) = dM

((∫ 1

0

a(•, s)ds
)
(dxI•)

)
= dM

(∫ 1

0

a(•, s)ds
)
p

∧ (dxI)p +

∫ 1

0

a(p, s)ds
(
dM (dxI)

)
p

= dM

(∫ 1

0

a(•, s)ds
)
p

∧ (dxI)p

and

(L ◦ dN )(w)p = L(da ∧ dt ∧ dxI)p

= L

(
m∑
i=1

∂a

∂xj
dxj ∧ dt ∧ dxI

)
p

= −L

(
m∑
i=1

∂a

∂xj
dt ∧ dxj ∧ dxI

)
p

= −

(
m∑
i=1

∫ 1

0

∂a

∂xj
(p, s)ds · dxj

)
∧ dxI

= −dM
(∫ 1

0

a(•, s)ds
)
p

∧ dxI

this concludes case (c), the proof is done. □

Theorem 3.38. Suppose f, g ∈ C∞(M,N) are smoothly homotopic, i.e. there exists H ∈ C∞(M× [0, 1], N)
such that H(•, 0) = f(•) and H(•, 1) = g(•), then f∗ = g∗ on Hk

dR(N) for k = 0, 1, 2, · · · .
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Proof. Take maps fi :M × [0, 1] →M and L from lemma 3.37. Then H ◦ f0 = f , H ◦ f1 = g. Therefore

g∗ − f∗ = (f∗1 − f∗0 ) ◦H∗ = dM ◦ L ◦H∗ + L ◦ dM×[0,1] ◦H∗ = dM ◦ L ◦H∗ + L ◦H∗ ◦ dN
suppose w ∈ Zk(N), then (g∗ − f∗)(w) = dM ◦ L ◦ H∗(w) ∈ Bk(M), hence the difference is zero on the
cohomology groups. □

Theorem 3.39. Suppose M and N are homotopic manifolds without boundary, i.e. there exists f ∈
C∞(M,N) and g ∈ C∞(N,M) such that f ◦ g and g ◦ f are smoothly homotopic to idM , idN respectively,
then Hk

dR(N) ∼= Hk
dR(M) for k = 0, 1, 2, · · · .

Proof. By theorem 3.38, g∗ ◦ f∗ = (f ◦ g)∗ = (idM )∗ = idHk
dR(M), and f

∗ ◦ g∗ = (idN )∗ = idHk
dR(N) on all

the respective cohomology groups. Therefore f∗ is the isomorphism required. □

Example 3.40. Suppose n ∈ N+. Then Sn and Rn+1\{0} are homotopic via the following maps:

Sn Rn+1\{0} Snι π

where ι is the inclusion map and π is given by x 7→ x

|x|2
. Then π◦ι = idSn , and ι◦π is homotopic to idRn+1\{0}

via H : (Rn+1\{0})× [0, 1] → Rn+1\{0}, H(x, t) = tx+(1− t) x

|x|2
, it is obvious that H(x, 1) = idRn+1\{0}(x)

and H(x, 0) = ι ◦ π(x). Therefore Hk
dR(S

n) ∼= Hk
dR(Rn+1\{0}) for all k.

Definition 3.41. Let M be a manifold. Denote H∗
dR(M) =

⊕∞
i=0H

i
dR(M), then it is an R-algebra with

respect to the following product:

⌣: H∗
dR(M)×H∗

dR(M) → H∗
dR(M), [w1]⌣ [w2] = [w1 ∧ w2]

this map is called the cup product.

Proposition 3.42. The cup product for M is well-defined.

Proof. Take [w1] ∈ Hk
dR(M), [w2] ∈ H l

dR(M) and ρ ∈ Ωk−1(M), then [w1 + dρ] = [w1]. To verify it is
well-defined, one has to show [(w1 + dρ) ∧ w2] = [w1 ∧ w2], i.e. dρ ∧ w2 is exact. Since

d(ρ ∧ w2) = dρ ∧ w2 + (−1)k−1ρ ∧ dw2 = dρ ∧ w2

the proof is done. □

Example 3.43. H∗
dR(S

1) ∼= R⊕ R as real vector spaces, and (H∗
dR(S

1),⌣) ∼= R[x]/
〈
x2
〉
as R-algebras.

Theorem 3.44. Let M be a manifold, and U, V be open subsets of M such that M = U ∪ V . Denote the
inclusion maps ιU,M : U →M , ιV,M : V →M and similarly ιU∩V,U , ιU∩V,V . Then:

(a) the sequence of R-vector spaces

0 Ω∗(U ∪ V ) Ω∗(U)⊕ Ω∗(V ) Ω∗(U ∩ V ) 0α β

is exact, where α = ι∗U,M + ι∗V,M and β = ι∗U∩V,U − ι∗U∩V,V .

(b) there is the following long exact sequence (Mayer-Vietoris sequence)

0 H0
dR(U ∪ V ) H0

dR(U)⊕H0
dR(V ) H0

dR(U ∩ V )

H1
dR(U ∪ V ) H1

dR(U)⊕H1
dR(V ) H1

dR(U ∩ V ) · · ·

α β

δ

α β
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Proof. (a) α is injective since w ∈ Ωk(U ∪ V ) is determined by w|U and w|V . Since β ◦ α(w) = w|U∩V −
w|U∩V = 0, imα ⊂ kerβ. Take w1 ∈ Ω∗(U) and w2 ∈ Ω∗(V ) such that β(w1, w2) = 0. Then w1|U∩V =
w2|U∩V , therefore just take

w =

{
w1, x ∈ U

w2, x ∈ V

then α(w) = (w1, w2), kerβ ⊂ imα, therefore kerβ = imα.
Now show β is surjective. Take ρ ∈ Ωk(U ∩ V ) and a partition of unity λU , λV subordinate to the cover

{U, V }. Then β(λUρ,−λV ρ) = (λUρ)|U∩V + (λV ρ)U∩V = ρ.

(b) Denote d
(k)
U ⊕d(k)V = d

(k)
1 , d

(k)
U∪V = d

(k)
0 and d

(k)
U∩V = d

(k)
2 . First, claim that α(k) and β(k) induces maps

on the corresponding cohomology groups. Suppose w ∈ ker d
(k)
0 , then d

(k)
1 ◦ α(k)(w) = α(k+1) ◦ d(k)0 = 0,

therefore α(k)w ∈ ker d
(k)
1 . Suppose d

(k)
0 w ∈ im d

(k)
0 , then α(k) ◦d(k)0 (w) = d

(k)
1 ◦α(k+1)(w) ∈ im d

(k)
1 , verifying

the claim. Then obviously α
(k)
1 , β

(k)
1 and α

(k)
2 , β

(k)
2 induce the same map on the cohomology groups, and

kerβ(k) = imα(k).

0 0 0

0 ker d
(k)
U∪V ker(d

(k)
U ⊕ d

(k)
V ) ker d

(k)
U∩V

0 Ωk(U ∪ V ) Ωk(U)⊕ Ωk(V ) Ωk(U ∩ V ) 0

0 Ωk+1(U ∪ V ) Ωk+1(U)⊕ Ωk+1(V ) Ωk+1(U ∩ V ) 0

coker d
(k)
U∪V coker (d

(k)
U ⊕ d

(k)
V ) coker d

(k)
U∩V 0

0 0 0

α(k) β(k)

α(k+1) β(k+1)

α
(k)
1 β

(k)
1

δ

α
(k+1)
2 β

(k+1)
2

Next, construct the map δ. Take w ∈ ker d
(k)
2 , since β is surjective, there exists (wU , wV ) ∈ Ωk(U) ⊕

Ωk(V ) such that β(wU , wV ) = w. Then d
(k)
1 (wU , wV ) ∈ kerβ(k+1) = imα(k), since α(k) is injective, there

exists ρ ∈ Ωk+1(U ∪ V ) such that αk+1(ρ) = d
(k)
1 (wU , wV ). Define δ([w]) = [ρ]. Since α(k+2)d

(k+1)
0 ρ =

d
(k+1)
1 α(k+1)ρ = 0, ρ ∈ ker d

(k+1)
0 . Claim that it is well-defined on the cohomology groups. First, suppose

there are two preimage of w, say w1 and w2. Then w1−w2 ∈ kerβ(k) = imα(k), and d
(k)
0 ((α(k))−1(w1−w2)) =

(α(k+1))−1(d
(k)
1 (w1 − w2)), hence the choice of preimage does not matter. Second, suppose w1 − w2 =

d
(k−1)
2 ◦ β(k−1)(γ), then w1 − w2 = β(k) ◦ d(k)2 (γ). Take d

(k)
2 (γ) as the preimage, then obviously it does not

affect the image of δ.

Now verify ker δ = imβ(k). Suppose w ∈ imβ(k), then there exists γ ∈ ker d
(k)
1 such that β(k)γ = w. Just

take γ as the preimage, then δ(w) = 0, w ∈ ker δ. Suppose w ∈ ker δ, suppose its image ρ, then there exists

γ such that ρ = d
(k)
0 γ. So α(k+1)ρ = d

(k)
1 ◦ α(k)(γ), therefore the preimage of w under β(k) is α(k)(γ) + s for

some s ∈ ker d
(k)
1 . Then w = β(k)(α(k)(γ) + s) = β(k)(s) ∈ imβ(k).
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Finally, check kerα(k+1) = im δ. Suppose [w] ∈ kerα(k+1), then there exists γ such that α(k+1)w = d
(k)
1 γ.

Then δ ◦ β(k)(γ) = w. Suppose [w] ∈ im δ, then obviously [α(k+1)(w)] = 0. □

Example 3.45. (a) Let M,N be manifolds with N being homotopic to a point. Then M ×N is homotopic
to M : since N is homotopic to a point, M ×N is homotopic to M × {0}. Then M × {0} is diffeomorphic
to M via f :M →M × {0}, m 7→ (m, 0).

(b) Compute the de Rham cohomology for spheres Sn. When n = 1, by previous examples H0
dR(S

1) ∼= R,
H1
dR(S

1) ∼= R. For n = 2, take S2 = U ∪ V where U = {(x, y, z) ∈ S2 | z > −1/2} and V = {(x, y, z) ∈ S2 |
z < 1/2}. Notice that U and V are homotopic to points. Then there is the Mayer-Vietoris sequence

0 H0
dR(S

2) H0
dR(pt)⊕H0

dR(pt) H0
dR(S

1)

H1
dR(S

2) H1
dR(pt)⊕H1

dR(pt) H1
dR(S

1)

H2
dR(S

2) 0

α(0) β(0)

δ(0)

δ(1)

α(1) β(1)

Since kerβ(0) = imα(0) is one dimensional, imβ(0) is also one-dimensional and therefore surjective. Hence
δ(0) = 0, α(1) is injective, thus H1

dR(S
2) = 0. Since β1 = 0, δ(1) is bijective. Thus H2

dR(S
2) = R. For Sn,

since Sn is connected, H0
dR(S

n) ∼= R. Take U = Sn\{(1, 0, · · · , 0)} and V = Sn\{(−1, 0, · · · , 0)}. U and
V are homotopic to a point, and U ∩ V is diffeomorphic to Sn−1 × R. Then there is the following exact
sequence for k ≥ 1:

· · · 0 Hk
dR(S

n−1) Hk+1
dR (Sn) 0 · · ·

therefore Hk
dR(S

n−1) ∼= Hk+1
dR (Sn). For k = 0,

0 R R⊕ R R H1
dR(S

n) 0 · · ·f g h

obviously im f = R = ker g, therefore g is surjective, thus h = 0. Since h is surjective, H1
dR(S

n) = 0.
Therefore

Hk
dR(S

n) =

{
R, k = 0, n

0, otherwise

(c) Since Mobius strip is homotopic to S1, its homology groups are the same as S1.
(d) Compute the de Rham cohomology of M = S1 × S1. Take U and V to be the upper and lower part

of the torus, then U and V are both homotopic to S1, and U ∩ V is homotopic to S1 ⊔ S1. Therefore there
is the sequence

0 H0
dR(M) H0

dR(U ⊔ V ) H0
dR(U ∩ V )

H1
dR(M) H1

dR(U ⊔ V ) H1
dR(U ∩ V )

H2
dR(M) 0

β0

α1 β1

δ0

δ1

suppose the inclusion maps ιU : U ∩ V → U and ιV : U ∩ V → V . Then since the restriction of constant
functions on U gives the same constant on both components of U ∩ V and similarly for V , for constant
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functions (a, b) ∈ H0
dR(S

1)⊕H0
dR(S

1), β0(a, b) = ι∗V b− ι∗Ua = (b− a, b− a). Denote the two components of
U ∩V to be A and B respectively. Obviously A and B both are retracts of U and V . Take an embedding of
S1 on A such that dθ induces a generator on H1

dR(A), then it also induces a generator on H1
dR(U). Therefore

in the following diagram the map from H1
dR(U) to H1

dR(A) and H1
dR(B) is just the identity. Therefore β0

maps (bdθ, adθ) to ((b− a)dθ, (b− a)dθ), the image is one dimensional.

H1
dR(U) H1

dR(A)

H1
dR(U ⊔ V ) H1

dR(U ∩ V )

H1
dR(V ) H1

dR(B)

β1

Therefore H2
dR(M) = H1

dR(U ∩ V )/ ker δ1 = H1
dR(U ∩ V )/imβ1 ∼= R, H1

dR(M) = kerα1 ⊕ imα1 = im δ0 ⊕
kerβ1 ∼= (H1

dR(U ∩ V )/imβ0)⊕ R ∼= R⊕ R, and since M is connected, H0
dR(M) = R.

(e) Compute the de Rham cohomology of M = K, the Klein bottle. Divide it into two cylinders U, V ,
then their intersection U ∩ V is also a cylinder. Write the Mayer-Vietoris sequence

0 H0
dR(M) H0

dR(U ⊔ V ) H0
dR(U ∩ V )

H1
dR(M) H1

dR(U ⊔ V ) H1
dR(U ∩ V )

H2
dR(M) 0

β0

α1 β1

δ0

δ1

Obviously imβ0 = R. To determine β1, again one looks at the generator given by dθ from S1 on U∩V . Since
U and V are opposite cylinders, the mapping is just dθ 7→ (dθ − (−dθ)) = 2dθ, therefore imβ1 = R. Hence
H2
dR(M) = H1

dR(U ∩ V )/ ker δ1 = H1
dR(U ∩ V )/imβ1 ∼= 0, H1

dR(M) = kerα1 ⊕ imα1 = im δ0 ⊕ kerβ1 =
0⊕ R = R. Since the Klein bottle is connected, H0

dR(M) = R.
(f) Compute the de Rham cohomology of M = RPn. First introduce a map A : Sn → Sn, x 7→ −x.

For [w] ∈ Hn
dR(S

n),
∫
Sn w is an isomorphism to R (since by Stokes’ theorem exact forms will be sent to

zero). Define w by wp(v1, · · · , vn−1) = det(p, v1, · · · , vn−1). Then w is a generator. Since A sends w to
(−1)n+1w, A∗ is just a multiplication map by (−1)n+1. Since (A∗)2 = id, the complexes of Sn, Ωk(Sn),
can be decomposed into the direct sum of eigen spaces of A∗, i.e. Ωk(Sn) = Ωk(Sn)+ ⊕ Ωk(Sn)− via
v = (1/2)(v + Pv) + (1/2)(v − Pv). Since d respects the decomposition, one can define Hk

dR(S
n)+ and

Hk
dR(S

n)−. Obviously Hn
dR(S

n) ∼= Hn
dR(S

n)+ when n is odd, and Hn
dR(S

n) ∼= Hn
dR(S

n)− when n is even.
Suppose the projection map π : Sn → RPn, since πA = π, π∗ = A∗π∗. Thus π∗ : Ωk(RPn) → Ωk(Sn)+.
Claim that π∗ is an isomorphism. If the claim is true, then

Hk
dR(RP

n) ∼= Hk
dR(S

n)+ =

{
R, if k = 0 and k = n when n is odd

0, otherwise

Now verify the claim. Suppose a ∈ Ωk(Sn) and w ∈ Ωk(RPn) such that π∗w = a, then

(π∗w)p(v1, · · · ) = wπ(p)((π∗)pv1, · · · ) = ap(v1, · · · )
but for every π(p) and (π∗)pv1, there are only two choices, one is p, v1 and the other is A(p), A∗(v1). Hence
w is uniquely determined iff ap(v1, · · · ) = aA(p)(A∗v1, · · · ) = A∗ap(v1, · · · ), i.e. a ∈ Ωk(Sn)+.
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Theorem 3.46. Suppose n ≥ 0 an even integer. Then there is no nowhere vanishing smooth vector field on
Sn.

Proof. Suppose there is such vector field, denoted by x 7→ vx. Then

H(x, t) : Sn × [0, 1] → Sn, (x, t) 7→ x cos(πt) +
vx
|vx|

sin(πt)

is a smooth homotopy between id and A : x 7→ (−x). But A is of degree −1, contradiction. □
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4. Integration

Definition 4.1. Let V be a finite dimensional real vector space. Two (ordered) basis v = {v1, · · · , vn}
and w = {w1, · · · , wn} have the same orientation if the base change matrix from V to W has positive
determinant. This is an equivalent relation on the set of ordered basis, denote their quotient with or(V ).

Example 4.2. (a) V = Rv, then or(V ) = {[v], [−v]}.
(b) V = Rv1 ⊕ Rv2, then or(V ) = {[v1, v2], [v2, v1]}.

Definition 4.3. A map O :M →
⊔
p∈M or(TpM) is called an orientation on M if ∀p ∈M , ∃(φ,U) around

p such that ∀q ∈ U , there is

O(q) =

[(
∂

∂x1
(q), · · · , ∂

∂xn
(q)

)]
Denote or(M) the set of orientations on M . M is called orientable if or(M) ̸= ∅.

Proposition 4.4. If M is connected, then the number of orientations on M can only be zero or 2.

Proof. Suppose O,O′ two orientations on M , put U= = {p ∈M | O(p) = O′(p)} and U ̸= = {p ∈M | O(p) ̸=
O′(p)}. By definition 4.3, they are open sets and M = U= ∪ U ̸=. Therefore M = U= or M = U̸=. Take a
point p0 ∈M , then the map or(M) → or(Tp0M), O 7→ Op0 is injective, therefore |or(M)| ≤ 2.

Now assume |or(M)| = 1, take the only orientation O. For O, suppose for every point p, the chart around
p is φ = (x1, · · · , xn). Now take φ′ = (x2, x1, · · · , xn) and define O′ via

p 7→
[(

∂

∂x2

)
(p),

(
∂

∂x1

)
(p), · · ·

]
then obviously O′ is another orientation of M , contradiction. □

Proposition 4.5. Let Mm be a manifold. Then the following statements are equivalent:
(a) M is orientable;
(b) M has an atlas where for all the transition maps, their jocabian have positive determinant;
(c) There exists w ∈ Ωm(M) such that for all p ∈M , wp ̸= 0.

Proof. Suppose M is orientable, then just take the atlas using local charts (φ,U) in definition 4.3. Suppose
a point p in the intersection of two such charts U ∩ V , then [ ∂

∂x1
(p), · · · , ∂

∂xn
(p)] and [ ∂

∂y1
(p), · · · , ∂

∂yn
(p)]

must be in the same equivalence class, therefore their base change map (which is the jocabian) must has
positive determinant. Conversely suppose there is already such an atlas. Then just take an orientation via
p 7→ [ ∂

∂x1
(p), · · · , ∂

∂xn
(p)], it is obviously an orientation and well-defined on the intersections. Hence (a) and

(b) are equivalent.
(b)⇒(c). Suppose such an atlas denoted by (φi, Ui). Take a partition of unity λi subordinate to this

atlas. Suppose φi = (x1i , · · · , xni ), put w =
∑
I λidx

1
i ∧ · · · ∧ dxni . For all p ∈ M , suppose local chart φj

and a tangent vector vp = [ ∂
∂x1

j
, · · · , ∂

∂xn
j
], since the determinants are all positive, dx1i ∧ · · · ∧ dxni (vp) > 0.

Therefore wp ̸= 0.
(c)⇒(a). Take w ∈ Ωm(M) nowhere vanishing. Define O : M →

⊔
p∈M or(TpM) via O(p) = {[v] |

v1, · · · , vm ∈ TpM,w(v1, · · · , vm) > 0}. Now verify O is indeed an orientation. Take p ∈ M and a chart
(φ,U) around p (U is connected), then w|U = adx1 ∧ · · · ∧ dxn with a ∈ C∞(U,R) nowhere vanishing. Then
a(U) ⊂ (0,∞) or a(U) ⊂ (−∞, 0). For the first case, O(q) = [ ∂

∂x1
(q), · · · , ∂

∂xn
(q)] for all q ∈ U , therefore

(φ,U) satisfies definition 4.3. For the second case, just take chart (φ′ = (−x1, · · · , xm), U). □

Proposition 4.6. Let Mm (m ≥ 2) be a manifold and ∂M ̸= ∅. Suppose or(M) ̸= ∅, then or(∂M) ̸= ∅.
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Proof. Take O ∈ or(M), for p ∈ ∂M and a chart (φ = (x1, · · · , xm), U) preserving O and maps U to the
lower half space, U ∩ ∂M to an open subset of x1 = 0. Since ((x2, · · · , xm), U) is a chart for ∂M , take
∂O(p) = [ ∂

∂x2
(p), · · · , ∂

∂xn
(p)], then ∂O ∈ or(∂M). □

Example 4.7. (a) Rn is orientable because w = dx1 ∧ · · · ∧ dxn is nowhere vanishing for all p ∈ Rn since
wp(

∂
∂x1

(p), · · · , ∂
∂xn

(p)) = 1.

(b) Sn is orientable, because Sn is a boundary of an orientable manifold Sn = ∂B1(0)
(3).

(c) The Mobius strip is not orientable.

Proof. Assume the Mobius strip, denoted by M , is orientable. Then there exists w ∈ Ω2(M) such that w is
nowhere vanishing. Now take E1(θ), E2(θ) : R → TM from example 1.34, then (E1(θ), E2(θ)) is an ordered
basis of Tp(0,θ) for all θ ∈ R. Put f(θ) = wp(0,θ)(E1(θ), E2(θ)), then f : R → R is nowhere vanishing. But
f(0) = −f(2π), contradiction. □

Remark 4.8. One also need the notion of orientability of a zero dimensional manifold. For a zero dimensional
manifold M , which is just a countable set of points, an orientation on M is a map O : M → {±1}.
Then proposition 4.6 still holds: for a one dimensional manifold M and p ∈ ∂M , take a chart such that
σ(p) = [ ∂∂x (p)]. Take ∂O(p) ∈ {±1} such that ∂O(p) ∂∂x is pointing outwards.

Definition 4.9. Suppose Mm a manifold and O an orientation on M . Denote Cc(M,R) and Ωkc (M) to
be the collection of continuous functions from M → N and the differential forms on M with compact
support respectively. An atlas (φi, Ui)I is called to have orientation O if every chart (φi, Ui) has orientation
O|Ui

, i.e. ∀p ∈ Ui, O(p) = [ ∂
∂y1

(q), · · · , ∂
∂ym

(q)]. For such chart (φ, V ), define I(φ,V ) : Ωmc (V ) → R via

I(φ,V )(ady1 ∧ · · · dyn) =
∫
φ(V )

ady1 · · · dyn. If m ≥ 1, define I(M,O) : Ω
m
c (M) → R as follows: let (Ui, φi)i∈I

be a locally finite atlas with orientation O and (λi)i∈I be a partition of unity subordinate to (Ui)i∈I . Then
I(M,O)(w) =

∑
i∈I I(φi,Ui)(λiw). If m = 0, then IM,O(a) =

∑
p∈M O(p)a(p) for a ∈ Cc(M,R). I(M,O)(w) is

called the integration of w over M and is denoted by
∫
(M,O)

w.

Remark 4.10. suppλi ∩ suppw ̸= ∅ only for finitely many i ∈ I, say i ∈ I0 (this is because (suppλi)I is
locally finite, and suppw is compact). Therefore the summation is finite.

Proposition 4.11. The integration I(M,O) is well-defined, i.e. it does not rely on the choice of oriented
atlas and partition of unity.

Proof. First suppose two charts (φ,U), (ψ, V ) with two coordinates φ = (x1, · · · , xm) and ψ = (y1, · · · , ym)
with the same orientation, i.e. det(D(ψ ◦φ−1)) > 0. Then on U ∩V , there are two charts φ and ψ. Suppose
w = adx1 ∧ · · · ∧ dxm = bdy1 ∧ · · · ∧ dym, put D = D(ψ ◦ φ−1), then dy1 ∧ · · · ∧ dym = det(D)dx1 ∧ · · · dxm.
Therefore

adx1 ∧ · · · ∧ dxm = bdet(D)dx1 ∧ · · · ∧ dxm
therefore bdet(D) = a. In calculus it is shown that∫

φ(U∩V )

adx1 · · · dxm =

∫
ψ(U∩V )

a

∣∣∣∣det(∂(x1, · · · , xm)

∂(y1, · · · , ym)

)∣∣∣∣ dy1 · · · dym
since they have the same orientation,

det

(
∂(x1, · · · , xm)

∂(y1, · · · , ym)

)
> 0
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therefore ∫
φ(U∩V )

adx1 · · · dxm =

∫
ψ(U∩V )

a det

(
∂(x1, · · · , xm)

∂(y1, · · · , ym)

)
dy1 · · · dym

=

∫
ψ(U∩V )

a(det(D))−1dy1 · · · dym

=

∫
ψ(U∩V )

bdy1 · · · dym

Also, on U ∩ V , there is
∫
U∩V (a + b) =

∫
U∩V a +

∫
U∩V b by definition. Now suppose two atlases (φα, Uα)

and (ψβ , Uβ) with partition of unity λα and ρβ . Suppose a form w ∈ Ωkc (M), then

∑
α

∫
(φα,Uα)

λαw =
∑
α

∫
(φα,Uα)

λα(
∑
β

ρβ)w =
∑
α

∑
β

∫
(φα,Uα)

λαρβw

since supp (λαρβ) ⊂ Uα ∩ Vβ ,∑
α

∑
β

∫
(φα,Uα)

λαρβw =
∑
α

∑
β

∫
(φα,Uα∩Vβ)

λαρβw

=
∑
β

∑
α

∫
(ψβ ,Vβ)

λαρβw

=
∑
β

∫
(ψβ ,Vβ)

ρβw

the proof is done. □

Example 4.12. (a) Suppose M = Z ⊂ R, dimM = 0. Take an orientation O : M → {±1}, z 7→ (−1)z.
Then for f ∈ Cc(M,R), f is only nonzero on finitely many points (since it is compactly supported). Then∫

(M,O)

f =
∑
z∈M

(−1)zf(z)

(b) M = [a, b] ⊂ R, take two charts (id = s, U = [a, c)) and (id = t, U = (b, d]) where a < b < c < d.
Suppose w = (adx)|M where adx ∈ Ω1

c(R). Take a partition of unity λU , λV . Then∫
M

adx =

∫
[a,c)

λU (s)a(s)ds+

∫
(b,d]

λV (t)a(t)dt

=

∫ b

a

a(x)dx

if a = df , then by the fundamental theorem of calculus,∫
M

adx = f(b)− f(a) =

∫
∂M

f
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(c) M = S2, take the natural orientation induced by being the boundary. Then∫
S2

zdx ∧ dy =

∫
S2∩{z>0}

zdx ∧ dy +
∫
S2∩{z<0}

zdx ∧ dy

=

∫
B1(0)(2)

z+(x, y)dx ∧ dy + (−1)

∫
B1(0)(2)

z−(x, y)dx ∧ dy

= 2

∫
B1(0)(2)

√
1− x2 − y2dxdy =

4π

3

Take N = B1(0)(3), with the orientation induced by R3. Then∫
N

dx ∧ dy ∧ dz =
∫
N

dxdydz =
4π

3
=

∫
∂N

zdx ∧ dy

Theorem 4.13 (Stokes’ theorem). Let Mm(m ≥ 1) be an oriented manifold and w ∈ Ωm−1
c (M). Then∫

M

dw =

∫
∂M

w|∂M

Proof. Suppose w ∈ Ωm−1
c (M). Let (λi)I be a partition of unity subordinate to an locally finite atlas (φi, Ui)

with the same orientation such that Ui is compact for all i. Then λiw ∈ Ωm−1
c (Ui), ∂Ui = Ui ∩ ∂M and

suppλi ∩ suppw ̸= ∅ only for finitely many i ∈ I, say i ∈ I0. Suppose the stokes’ theorem is true for each
Ui, then ∫

M

dw =

∫
M

d

(∑
i∈I0

λiw

)

=
∑
i∈I0

∫
M

d(λiw) =
∑
i∈I0

∫
Ui

d(λiw)

=
∑
i∈I0

∫
∂Ui

(λiw)|∂Ui =
∑
i∈I0

∫
∂M

(λiw)|∂Ui

=
∑
i∈I0

∫
∂M

(λiw)|∂M (supp (λiw|∂M ) ⊂ ∂Ui)

=

∫
∂M

dw|∂M

Now show stokes’ theorem for a local chart U . Suppose w = adxI , where |I| = m− 1. The index that does
not appear in I is denoted by j.

Case (a): suppose U is open, then dw = ∂ai
∂xj

dxj ∧ dxI . Since ∂U = ∅,
∫
∂U

w = 0. Also,∫
U

dw =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∂ai
∂xj

dx1 · · · dxm(−1)j+1

since a is compactly supported, the above integral is just zero by the fundamental theorem of calculus. This
concludes case (a).
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Case (b): m ≥ 2, M = U ⊂ {x1 ≤ 0} (the lower half space). Still, take w = adxI with j the index that
does not appear. Then ∫

U

dw =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ 0

−∞

∂a

∂xj
dx1 · · · dxm(−1)j+1

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
a(0, x2, · · · , xm)dx2 · · · dxm

=

∫
∂U

w|∂U

this concludes case (b). For the case where m = 1, the same arguments works except the orientations are
given by {±1} on the boundary. With all cases concluded, the proof is done. □

Example 4.14. (a) Fundamental theorem for line integrals, let C be a smooth curve in R3 parametrized
by r(t) = (x(t), y(t), z(t)) such that r′(t) ̸= 0 for all t ∈ [a, b]. Then for f ∈ C∞(R2,R),∫

C

df =

∫
∂C

f = f(r(b))− f(r(a))

(b) Green’s theorem. Let D be a compact manifold of R2 of dimension 2, and P,Q ∈ C∞(R2,R). Then∫
∂D

Pdx+Qdy =

∫
D

(
∂Q

∂x
− ∂P

∂y

)
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5. Compactly Supported de Rham Complex

Definition 5.1. Let Mm be a manifold. The complex

0 Ω0
c(M) Ω1

c(M) · · · Ωmc (M) 0
d(0)c d(1)c d(m)

c

is called the compactly supported de Rham complex. For k ≥ 0, define Hk
c (M) to be the compactly supported

de Rham cohomology.

Example 5.2. (a) H0
c (Rn) = 0 for n > 0, and H0

c (pt) = R;
(b) H1

c (R) ∼= R. First show that im (d
(0)
c ) = {w ∈ Ω1

c(R) |
∫
R w = 0}. Suppose dw ∈ im d

(0)
c , then by

Stokes’ theorem
∫
R dw =

∫
∂R w = 0. For the other direction, suppose w ∈ Ω1

c(R) with
∫
R w = 0. Since

H1
dR(R) = 0, there exists a ∈ C∞(R,R) such that w = da. Take [c, d] such that suppw ⊂ (c, d). Then

0 =

∫
R
w =

∫
[c,d]

w = a(d)− a(c)

take e = a(d), then a(x) = e for all x ∈ R\(c, d). Take b(x) = a(x) − e, then db = w and b has compact
support. Therefore the map H1

c (R) → R, w 7→
∫
R w injective, and it is obviously surjective.

(c) H1
c (R2) = 0. Suppose α ∈ Ω1

c(R2) with dα = 0. Since H1
dR(R2) = 0, there exists f ∈ C∞(R2,R) such

that df = α. Take a curve C from P to Q with C ′ ̸= 0 everywhere and im (c) ∩ suppα = ∅, then

0 =

∫
C

α|C =

∫
C

df |C =

∫
∂C

f |∂C = f(P )− f(Q)

and the rest of the argument follows from (b).

(d) H2
c (R2) ∼= R. One only need to show that w ∈ Ω2

c(R2) with
∫
R2 w = 0 is in im (d

(1)
c ). Suppose

w = adx ∧ dy with supp (a) ⊂ (−R,R)2. Put A(x, y) =
∫ x
−R a(t, y)dt, then A = 0 for |y| ≥ R and

x ≤ −R. Suppose λ a bump function supported in (0, 1) such that
∫
R λdt = 1, put C(t) =

∫ t
0
λ(s)ds

and B(y) = A(R, y). Since
∫
RB(y)dy =

∫
R2 w = 0, there exists D ∈ Ω0

c(R) such that dD = Bdy. Let

w0 = (A− C(x)B(y))dy − λ(x)D(y)dx. Since suppλD ⊂ (−R,R)2 and A(x, y)− C(x)B(y) = 0 for x ≥ R,
suppw0 ⊂ (−R,R)2. Also,

dw0 = adx ∧ dy − λ(x)B(y)dx ∧ dy − λ(x)B(x)dy ∧ dx = adx ∧ dy

Theorem 5.3. Suppose n, k ≥ 0, then

Hk
c (Rn) ∼=

{
R, k = n

0, otherwise

Proof. Attempt proof by showing that for n ≥ 2 and k ≥ 1, Hk
c (Rn) ∼= Hk+1

c (Rn+1) andH1
c (Rn) = 0. Firstly,

H1
c (Rn) = 0 follows from the exact same argument in example 5.2 (c). Fix a bump function λ : R → [0, 1]

with integral 1, and Λ(x) =
∫ x
−∞ λ(x)dx. Put

lk : Ωkc (Rn) → Ωk+1
c (Rn+1), lk(aIdx

I) = aIλ(xn+1)dx
I ∧ dxn+1

then

d ◦ lk(aIdxI) = λ(xn+1)
∑
j ̸∈I

∂aI
∂xj

dxj ∧ dxI ∧ dxn+1 = lk+1 ◦ d(aIdxI)

also put

jk+1 : Ωk+1
c (Rn+1) → Ωkc (Rn), jk+1(dx

I) = 0, jk+1(bJ(x, xn+1)dx
J ∧ dxn+1) =

∫ ∞

−∞
bJ(x, s)dsdx

J
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then obviously it also has d ◦ jk+1 = jk+2 ◦ d. Therefore they induce maps on the respective cohomology
groups. Since

jk+1 ◦ lk(aIdxI) =
(∫ ∞

−∞
λ(xn+1)dxn+1

)
aIdx

I = aIdx
I

jk+1 ◦ lk = idHk
c (Rn). Now show that lk ◦ jk+1 is homotopy equivalent to id. Suppose a homotopy operator

Hk+1 : Ωk+1
c (Rn+1) → Ωkc (Rn+1)

Hk+1(dx
I) = 0, Hk+1(bJ(x, xn+1)dx

J ∧ dxn+1) =

∫ xn+1

−∞
bJ(x, s)ds− Λ(xn+1)

∫ ∞

−∞
bJ(x, s)dsdx

J

claim that 1− lk ◦ jk+1 = (−1)k(dHk+1 −Hk+2d). Suppose w = aIdx
I , then

lk ◦ jk+1(aIdx
I) = 0, d ◦Hk+1 = 0

and

Hk+2 ◦ d(aIdxI) = Hk+2

∑
j ̸∈I

∂aI
∂xj

dxj ∧ dxI + ∂aI
∂xn+1

dxn+1 ∧ dxI


= Hk+2

(
(−1)k

∂aI
∂xn+1

dxI ∧ dxn+1

)
= (−1)kaIdx

I

therefore the formula is true for forms of form aIdx
I . For the other case, suppose w = bJdx

J ∧ dxn+1, then

(dHk+1 −Hk+2d)(bJdx
J ∧ dxn+1) = (−1)k(1− lkjk+1)(bJdx

J ∧ dxn+1)

therefore the two maps induces isomorphisms on the cohomology groups, which concludes the proof. □

Remark 5.4. (a) Let M be a manifold that admits one global chart. Then Hk
c (M) ∼= Hk+1

c (M × R) for all
k ≥ 0. This follows from the argument for theorem 5.3, since M admits one global chart. Now compute
the compactly supported de Rham cohomology for half spaces: Hk

c (Rn−1 × [0,∞)) = 0 for all k. One only
need to consider the case where n = 1. Since [0,∞) is not compact and connected, H0

c ([0,∞)) = 0. Suppose
w = adx ∈ Ω1

c([0,∞)), then w = db, and since w is compactly supported, suppose w = 0 on (R,∞). Then∫
[0,∞)

w =

∫
[0,R]

w = b(R)− b(0)

therefore w = d(b− b(0)) ∈ im d.
(b) From now on only consider manifolds without boundary.

Definition 5.5. Let M be a manifold and k ≥ 0. A differential k-form w ∈ Ωkc (M) is called a bump form
if there exists (φ,U) a chart such that supp (w) is compact and is a subset of U , with w = λdxI for some
bump function λ.

Theorem 5.6. Suppose M a n-dimensional connected manifold. Then

Hn
c (M) ∼=

{
R, M is orientable

0, otherwise

Proof. Suppose [w] ∈ Hn
c (M), and an atlas (φi, Ui) whose charts are just open balls. Take a partition of

unity λi subordinate to this atlas. Since suppw is compact, only for finitely many i, say {1, · · · , s}, wi = λiw
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is non-zero. Therefore w =
∑
i∈I0 λiw. Since Hn

c (Ui)
∼= R by integration, [wi] = ci[ui] where ui is some

bump form. By lemma 5.7,

[w] =

n∑
i=1

ci[ui] = c[u1]

therefore dimHn
c (M) ≤ 1. If M is orientable, by Stokes’ theorem, the integration is a well-defined linear

map to R. Hence dimHn
c (M) = 1.

If M is non-orientable, then by lemma 5.8 one may take such charts (φ1, U1), · · · , (φn, Un). Take [ui] to
be the bump form on Ui with ∫

Ui

ui = 1

By previous arguments [u1] is a generator of Hn
c (M). By the proof of lemma 5.7, one has

[u1] = [u2] = · · · = [un] = −[u1]

therefore [u1] = 0, Hn
c (M) = 0. □

Lemma 5.7. Suppose M a n-dimensional connected manifold and w1, w2 be two non-zero top bump forms.
Then there exists c ∈ R such that [cw1] = [w2] in H

1
c (R).

Proof. Denote BF (M) to be the collection of bump forms on M , and put BFp(M) = {w ∈ BF (M) |
p ∈ int suppw}. Suppose a, b ∈ BFp(M), and they can be written as a bump form locally on A,B with
A,B ∼= Rn respectively. Take an open ball U around p such that U ⊂ A ∩ B, and the chart on U has the
same orientation with A. Take a bump form on U , say u, with integration 1. Let

α =

∫
A

a, β =

∫
B

b

since Hn
c (Rn) ∼= R via integration, [αu] = [a] in Hn

c (A) and [±βu] = [b] in Hn
c (B) where the sign is

determined by the orientation of B respective to A. For convenience replace ±β with β. Then

αu− a = ds, βu− b = dt (∗)
where s ∈ Ωn−1

c (A), t ∈ Ωn−1
c (B). Since s, t can be easily extended to Ωn−1

c (M) by bump functions, (∗) is
also true in Ωnc (M). Therefore in Hn

c (M), [a] = α[u], [b] = β[u], hence [a] = (α/β)[b].
Put X = {q ∈ M | ∃w ∈ BF (M)q such that [w] = c[u] for some c ∈ R}. X is obviously open, and M\X

is also open, since otherwise one may take r ∈ M\X such that there is a sequence of point rn in X such
that r = limn→∞ rn. Take k large enough such that rk and r can be contained in the a small open ball.
By the argument in the last paragraph it is easy to construct a bump form whose support contains r and
cohomologous to u, hence r ∈ X, contradiction.

Since M is connected, X =M . This closes the proof. □

Lemma 5.8. Suppose M a non-orientable connected manifold. Then for all p ∈ M , there exists a finite
collection of charts (φ1, U1), · · · , (φn, Un) with p ∈ U1 = Un such that Ui∩Ui+1 ̸= ∅, det(D(φi+1 ◦φ−1

i )) > 0
for 1 ≤ i ≤ n− 1, and det(D(φ1 ◦ φ−1

n )) < 0.

Proof. Assume on contrary there does not exist such charts. Take p ∈M , fix a chart U1 around p. Then for
all q ∈ M , there is a path c : [0, 1] → M with c(0) = p and c(1) = q. Note that c can always be taken as
injective (if c is not injective at c(a), put t0 = inf{t ∈ [0, 1] | c(t) = c(a)} and t1 = sup{t ∈ [0, 1] | c(t) = c(a)},
then define a new curve c1 where c1(t) = c(t) for t ∈ [0, 1]\[t0, t1] and c1(t) = c(a) for t ∈ [t0, t1]). Since c
is compact, it can be covered by finitely many small open balls U1

c , · · · , Urc such that only the neighbouring
open sets have non-empty connected intersections. Adjust the charts on U1

c , · · · , Urc so that they all admit
the same orientation. Then for every q ∈ M , one has a chart Urc = Uc(q). Claim this gives an oriented
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atlas on M , i.e. for all a, b ∈ M with Uc1(a) ∩ Uc2(b) ̸= ∅, they have the same orientation. If they do not
have the same orientation, then one may shrink Uc1(a) and Uc2(b) so that their intersection is connected
and the jacobian is negative. Then U1

c1 , · · · , U
r
c1 , U

s
c2 , · · · , U

1
c2 will be a collection of charts in the lemma,

contradiction. □

Theorem 5.9 (Poincaré Duality). Let Mm be an oriented manifold without boundary such that M admits
a finite good cover. Then the pairing∫

M

: Hk
c (M)×Hm−k

dR (M) → R, ([a], [b]) 7→
∫
M

a ∧ b

is non-degenerate, i.e. Hk
c (M) ∼= Hm−k

dR (M).

Proof. First show the well-definedness of the pairing. Suppose [w1] = [w2] ∈ Hk
c (M), then w1 −w2 = da for

a ∈ Ωk−1
c (M). For ρ ∈ Ωm−k(M) with dρ = 0, one has da ∧ ρ = d(a ∧ ρ) − (−1)k−1a ∧ dρ = d(a ∧ ρ). By

Stokes’ theorem,
∫
M
da ∧ ρ = 0. The same argument goes for the second entry of the pairing.

Suppose finite good cover U1, · · · , Us for M , denote Vk =
⋃k
i=1 Ui, attempt proof by induction on k. By

lemma 5.13, it is true for k = 1. Now assume it is true for Vk−1, then there is the following diagram

· · · (Hs
c (Vk))

∗ (Hs
c (Vk−1))

∗ ⊕ (Hs
c (Uk))

∗ (Hs
c (Vk−1 ∩ Uk))∗ · · ·

· · · Hm−s
dR (Vk) Hm−s

dR (Vk−1)⊕Hm−s
dR (Uk) Hm−s

dR (Vk−1 ∩ Uk) · · ·

δ∗

δ

ι∗ ι∗ δ∗

ι ι δ

p p
The top row is reversed via π∗(f) = f ◦π. It is clear that the reversed row is still exact. By lemma 5.12 and
lemma 5.13, one just need to show commutativity. Obviously it can be deduced to two cases:

Case (a): For N ⊂M , consider the diagram

(Hs
c (M))∗ (Hs

c (N))∗

Hm−s
dR (M) Hm−s

dR (N)

for w ∈ Hs
c (N), ι(w) is just the extension by zero, hence supp ι(w) ⊂ N . For ρ ∈ Hm−s

dR (M), ι(ρ) = ρN .
Then ∫

M

ι(w) ∧ ρ =

∫
N

w ∧ ρ|N

thus the diagram commute.
Case (b): For M,N two open sets, consider the diagram

(Hs
c (M ∩N))∗ (Hs−1

c (M ∪N))∗

Hm−s
dR (M ∩N) Hm−s+1

dR (M ∪N)δ

δ∗



DIFFERENTIAL TOPOLOGY 45

take ρ ∈ Hm−s
dR (M), put ρ̃ = δ(ρ), then ρ̃|M = dρ1, ρ̃|N = dρ2 and ρ = ρ1|M∩N − ρ2|M∩N . Also, for

w ∈ Hs−1
c (M ∪N), put w̃ = δ(w), then (ιMM∩N )∗w̃ = dw1, (ι

N
M∩N )∗w̃ = dw2 such that w1 − w2 = w. Hence∫

M∪N
w ∧ ρ̃ =

∫
M∪N

(w1 − w2) ∧ ρ̃ =

∫
M

w1 ∧ dρ1 −
∫
N

w2 ∧ dρ2

= (−1)s
(∫

M

dw1 ∧ ρ1 −
∫
N

dw2 ∧ ρ2
)

= (−1)s
∫
M∩N

w̃ ∧ (ρ1|M∩N − ρ2|M∩N )

= (−1)s
∫
M∩N

w̃ ∧ ρ

therefore for each five lemma diagram, let the left two maps be the pairing maps with sign (−1)s, and put
other maps to be the normal pairing maps. Then by previous discussions on case (a) and cases (b), this
diagram commutes. □

Remark 5.10. Suppose V,W real vector spaces and b : V ×W → R a bilinear form. b is said to be non-
degenerate if ∀w ∈W\{0}, ∃v ∈ V such that b(v, w) ̸= 0 and ∀v ∈ V \{0}, ∃w ∈W such that b(v, w) ̸= 0. If
V,W are finite dimensional, then b is non-degenerate iff f : V →W ∗, v 7→ b(v, •) is an isomorphism.

Proof. Suppose b is non-degenerate. Take bases of V,W and suppose they are of dimension m,n respectively,
then b(v, w) = vTBw for somem×nmatrix B. Take w1, · · · , wm the standard basis ofW , denote B1, · · · , Bn
the rows of B, then b(v, •) = 0 iff vTB1 = · · · = vTBm = BT1 v = · · ·BTmv = 0. Since b is non-degenerate, the
only solution for the above equation is v = 0, therefore m ≥ n and B is of rank n. By the same argument
on the other entry one finds m = n and B has full rank. Since B is exactly the matrix representation of the
map f under the basis of V and the dual basis of W , f is an isomorphism. □

Proposition 5.11. Let M = U ∪ V be a manifold with open subsets U , V . Then:
(a) the inclusion ιMU : U → M induces maps (ιMU )∗ : Ω∗

c(U) → Ω∗
c(M) and the same goes for other

inclusions;
(b) the sequence

0 Ω∗
c(U ∩ V ) Ω∗

c(U)⊕ Ω∗
c(V ) Ω∗

c(U ∪ V ) 0α β

is exact, with α = (ιUU∩V )∗ ⊕ (ιVU∩V )∗ and β = (ιMU )∗ − (ιMV )∗;
(c) there exists long exact sequence

0 H0
c (U ∩ V ) H0

c (U)⊕H0
c (V ) H0

c (U ∪ V )

H1
c (U ∩ V ) H1

c (U)⊕H1
c (V ) H1

c (U ∪ V ) · · ·

α β

δ

α β

Proof. (a) is obvious: since w ∈ Ω∗
c(U) is compactly supported, it may be extended to a compactly supported

form by zero using partition of unity.
(b) It is clear that α, β are chain maps and α is injective. Take a partition of unity λU , λV subordinate

to U, V . Then for w ∈ Ω∗
c(U ∪ V ), w = λUw + λV w = β(λUw,−λV w), hence β is surjective. Now check

imα = kerβ.
It is clear that β ◦ α = 0, therefore imα ⊂ kerβ. Suppose (w1, w2) ∈ kerβ, then (ιMU )∗w1 = (ιMV )∗w2,

hence w1|U∩V = w1 = w2, denote it by w′. Then suppw′ ⊂ suppw1 ∩ suppw2 which is compact in U ∩ V .
Hence α(w′) = (w1, w2), kerβ ⊂ imα.
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The argument of (c) is completely the same as theorem 3.44 (c). □

Lemma 5.12 (Five lemma). Consider the following commutative diagram of abelian groups with exact rows:

G1 G2 G3 G4 G5

H1 H2 H3 H4 H5

f1 f2 f3 f4

g1 g2 g3 g4

α1 α2 α3 α4 α5

if α1 is surjective, α5 is injective, and α2, α4 are isomorphisms, then α3 is an isomorphism.

Proof. First show injectivity. Suppose α3(s3) = 0, then f3(s3) = 0 since α4 is an isomorphism. Hence
s3 ∈ ker f3, then there exists s2 such that s3 = f2(s2). Then g2 ◦ α2(s2) = 0, α2(s2) ∈ ker g2, there
exists h1 such that g1(h1) = α2(s2). Since α1 is surjective, there exists s1 such that α1(s1) = h1. Then
α2 ◦ f1(s1) = g1 ◦ α1(s1) = α2(s2), since α2 is an isomorphism, f1(s1) = s2. Then s3 = f2(s2) = 0.

Then show surjectivity. Suppose h3 ∈ H3. Then g4 ◦ g3(h3) = 0. Since α4 is an isomorphism, there
exists s4 such that α4(s4) = g3(h3). Then α5 ◦ f4(s4) = 0. Since α5 is injective, f4(s4) = 0, there exists
s3 such that f3(s3) = s4. Then g3 ◦ α3(s3) = g3(h3). Therefore h = α3(s3) − h3 ∈ ker g3, there exists
h2 such that h = g2(h2). Since α2 is an isomorphism, there exists s2 such that h2 = α2(s2). Then
α3(s3 + f2(s2)) = α3(s3) + h = h3. □

Lemma 5.13. The pairing map is non-degenerate on Rn.

Proof. By the first step of theorem 5.9, the pairing map is a well-defined. One only need to consider the
pairing map on Hn

c (Rn) × H0
dR(Rn) since other maps are just zero maps between zero spaces. Suppose

w ∈ Hn
c (Rn) with

∫
Rn w ̸= 0, then just take ρ = 1 ∈ H0

dR(Rn),
∫
Rn w ∧ ρ =

∫
Rn w ̸= 0. Now suppose

ρ = c ∈ H0
dR(Rn) with c ̸= 0, take w = λdx1 ∧ · · · ∧ dxn ∈ Hn

c (Rn) where λ is a bump function with
integration 1, then

∫
Rn w ∧ ρ = c

∫
Rn w = c ̸= 0. □

Definition 5.14. LetM,N be closed oriented manifolds and f ∈ C∞(M,N). Then f∗ induces maps between
Hm
dR(N) and Hm

dR(M). Since they are both homeomorphic to R via integration, f∗ is just multiplication by
a real number. It is called the degree of f .

Theorem 5.15. Suppose M,N closed oriented manifolds and f a smooth map between them. Let q be
a regular value of f , and let E be the number of elements in f−1(q) counted with a sign according to
det(D(ψ ◦ f ◦ φ−1)) (i.e. whether f preserves orientation around that point). Then for all w ∈ Ωm(N),∫

M

f∗w = E

∫
N

w

Proof. First claim that E is finite. Assume not, then f−1(q) contains infinitely many points. Then one may
pick a sequence pi such that they are pairwise different. Since M is compact, one may take a convergent
subsequence pn with p = limn→∞ pn. Since f is continuous, f(p) = limn→∞ f(pn) = q. Since M and N are
of the same dimension and q is a regular value, dfp is an isomorphism and therefore f is a diffeomorphism
around p, contradiction.

Since M is compact, f(M) is compact and therefore closed. If f−1(q) = ∅, then q ∈ N\f(M) and
therefore then f∗wq = 0. □

Remark 5.16. (a) Take a bump form wN on N with integration 1. Then E = E
∫
N
w =

∫
M
f∗w = deg f ,

therefore deg f = E, which is an integer.
(b) By the definition of degree, one has deg(f ◦ g) = deg f · deg g.
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(c) Diffeomorphisms is always of degree ±1, with the sign determined by whether it is orientation pre-
serving.

(d) The definition of degree can be naturally extended to proper maps.

Theorem 5.17 (Sard theorem). Let Mm, Nn (m ≥ 0, n ≥ 1) be manifolds and f ∈ C∞(M,N). Then the
set of critical values of f is a set of measure zero in N .

Definition 5.18. LetMm be a manifold such that all of its cohomology groups are finite dimensional. Then

χ(M) =

m∑
k=0

(−1)k dimHk
dR(M)

is called the Euler characteristic of M .
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