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DIFFERENTIAL TOPOLOGY 2

1. MANIFOLDS AND SUBMANIFOLDS

Definition 1.1. Let X be a topological space. For n € N*, X is called a n-dimensional manifold if for every
x € X, there exists U C X open with z € U and ¢ : U — R"™ such that ¢ is a homeomorphism between U
and ¢(U), and ¢(U) is open in R™. Such (¢,U) is called a chart.

Example 1.2. (a) X = {(z,|z|) | # € R} C R%. (R,p) where ¢ : X — R,(z,|z|) = =« is a chart covers
X since ¢ is continuous and the inverse z — (z,|z|) is also continuous. Therefore X is a 1-dimensional
manifold.

(b) Suppose S = {(z,y) € B? | 22 + y? = 1} and take (z0,30) € S'. If [zo] # 1, then {(z,y) € S |
yyo > 0} and ¢ : (x,y) — x gives a chart, since im (¢) = (—1,1) and its inverse z — (z,sgn(yo)y/1 — z3)
are continuous. If |yg| # 1, one can construct a chart by simply exchanging xg and yg in the |zg| # 1 case.

Definition 1.3. Suppose U CC R", for a positive integer r, a function

fZU—)Rm7(CC17"' a$N)H(f1(x17"' a'rn)"" 7fm(9317"' 71:"))

is said to be C"-differentiable, if for each f;(x1,--- ,x,), all partial derivatives
0° fi
——U—=>R
oz - Oxp™
exists and continuous for every ai,---,a, € NT such that &« = a; +--- + a,, < r and each point in U.

Also, f is C°-differentiable if it is continuous, and C*°-differentiable (or smooth) if it is C"-differentiable for
any non-negative integer r. For a smooth function f, if it satisfies the Cauthy-Riemann equation for each
complex variable, then it is C"-differentiable (or analytic).

Definition 1.4. Let X be an n-dimensional manifold, two charts (p,U) and (¢, V) are said to have a
C"-overlap if o™t : p(UNV) — p(UNV) is a C"-diffeomorphism.

Definition 1.5. A family of charts {(g;,U;)}ier of X is called an atlas if X = (J;c;U;. An atlas of X
is called a C"-atlas if all overlaps are C". A maximal C"-atlas a (with respect to inclusion) is called a
C"-differentiable structure and (X, a) is called a C"-mainfold. A C"-manifold with r > 1 is called a smooth

manifold.

Proposition 1.6. Let M be a C"-manifold and ® is a C"-atlas on M. Then there is a unique mazimal
C"-atlas on M which contains ®.

Proof. Let T be the collection of all the charts of all the C"-atlases that is compactable with ® (i.e. for any
chart in these atlases, it has a C"-overlap with with all the charts in ®). T is an atlas since all the charts
have C"-overlaps. T is maximal, since if T C T", T” is compactable with T' and therefore contained in 7. [

Example 1.7. (a) Suppose D CC R", let f : D — R™ be a continuous map, define I'y = {(z, f(z)) | € D}.
The chart P, : I'y — D, (z, f(x)) — « gives an analytic differentiable structure.

(b) 8* = {z € R"™! | |z]a = 1}. The following charts form a C*-atlas on S™. For i € {+1}
and 7 € {1,---,n + 1}, define (¢;5,U; ) where U; s = {& € S" | sz; > 0} and g;s(x1, - Tpt1) =
(1, &4y ,xpy1). Take (i,8) and (4,t) such that i < j, then the overlap

(Qi,s Op;fl)(g) = qi,s(zla' o 72?j7' o 7t\/ 1- |§|27' o 7Zn)
is smooth.
Definition 1.8. Let M be a n-dimensional manifold with a C"-differentiable structure ., and let N be a

non-empty subset of M. N is called a k-dimensional submanifold of M if for all z € N, 3(p,U) € «, such
that NN U = ¢ }(R* x {0}) where 0 € R"~*.
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Remark 1.9. A chart of M that satisfies the definition above is called a submanifold chart for N. If N is a
submanifold of M, then the set {(¢|unn,UNN)|(¢,U) € a,-} is a C-atlas of N.

Example 1.10. (a) N = {(z,y,2) € R® | 2 = 22 + y?} is a submanifold of R?, because (p, R?) defined via
o(z,y,2) = (2,9, 2z — 2% —y?) is a submanifold chart, since (1) ¢ : R — R3 is a homeomorphism; (2) (i, R3)
has a C*-overlap with idjq gs; (3) ¢ '(R? x {0}) = N.

(b) N = {(z,]z]) | z € R} is not a C'-submanifold of R2.

Remark 1.11. (a) If M is a smooth manifold and let (¢, U) and (1, V) be two charts with Cl-overlap, and
UNYV # @, then the dimension of the target spaces are the same because the transition map must be
C'-diffeomorphism.

(b) Let M be a n-dimensional manifold and ¢ : V' — R™ an open embedding, then m = n. Therefore the
dimension of a manifold relies only on its topological structure.

Definition 1.12. A topological T? space (X,Z) is called paracompact if for every open cover C C T of X,
there is a refinement S C Z (i.e. S is an open cover of X such that for any U € §, 3V € C with U C V)
which is locally finite (i.e. Va2 € X,3K C X an open neighbourhood of x such that only finitely elements of
S intersect K).

Theorem 1.13 (Smirnov metrization theorenﬂ). Let X be a T?-space, these statements are equivalent:
(a) X is metrizable;
(b) X is paracompact and locally metrizable, i.e. Yz € X,3U € T with x € U such that (U, Iy) is
metrizable.

Remark 1.14. This lecture will only consider manifolds that are T3, second countable, paracompact, and
at most countablly many connected components. For those manifolds, the following tatements are tru
(a) every smooth manifold has a unique C*°-differential structure, i.e. Jlas such that as N # @; (b)
there exists C°-manifolds that do not exist a C'-differential structure on it; (c) such manifolds are always
metrizable.

Definition 1.15. Let (M, «,.) and (N, 8,) be smooth manifolds and f : M — N a map between them. f is
said to be differentiable at xo € M if there exists (¢,U) € o, with 29 € U and (¢, V) € 5, with f(U) CV
such that 1o fo ™t : oU) — (V) is differentiable at ¢(x¢).If ¥ o f o =1 is C"~1-differentiable and
o fop~tis differentiable at ¢(z0), then f is r-times differentiable at xo. f is C"-differentiable if o fop™!
is C"-differentiable.

Example 1.16. (a) For f : R® — R™, the definition of C"-differentiability is consistent with the previous
one.
(b) Every C™-map f : S — M is a restriction of a C"-map R""'\{0} — M given the construction

F(zx) = f(z/|z]2)

Definition 1.17. Let M be a C'-manifold, T = {(x,¢,U,v) : x € U C M, (p,U) € aj,v € R"}. Define
x~y: x=yand Do ) (p(xr))v =w. The equivalent classes in T/ ~ is called a tangent vector of M
at x. T/ ~ is called the tangent bundle of M. T, M = {[z,p,U,v] | € U} is called the tangent space of M
at 2. The tangent space obviously admits a linear structure. For f € C*(M, N),

(a) it defines a linear map T'f : TM — TN via Tf([z, ¢, U,v]) = [f(x),%,V, D(po fop=1)(p(z))v], called
the derivative of f;

(b) the restriction of T'f to T,,M, denoted by T}, f, is called the derivative of f at z.

LThis theorem is not proved here.
2The statements listed in this remark are not proved in the lecture, I just take the word from the lecturer.
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Example 1.18. (a) The inclusion ¢ : S™ < R"*! is analytic with respect to the differential sturcture given
in Example (one need to specify this as there are differential structures on S7 which are not compactable
with iff]). Let 1 <i <n+1, e = {1}, then

(id]R'rH»l (¢] LO(pi_,El)(g) = (2’1,~ Ct,Ri—1, \/ 1-— |§|§€,Z,’,- .. ,Zn)

therefore idgn+1 0t 0 ap;.l € C*(B1(0),R" 1), , € C¥(S™,R"T1).
(b) For S, take (¢2,1,Us,1) around p = (xo,y0). Then T,5' = {[p, p2.1,U21,w] | w € R}. To see the
intuition picture, compute T}, : TpS1 = Typ)r2,
Tou([p, 92,1, Uz,1,0)) = [p, idge, D(idz2 0 L0 0™ 1)(p2,1(p))v]
with

T 1
D(idgz 0 00~ ") (o) (v) = D( [ﬁ} )(wo)v = [ 2 ] v

which corresponds to the tangent line of S!.

Remark 1.19. N C M a smooth submanifold of M, identify T, N with T,,¢(T,N) C T,,(M), since there is a
canonical isomorphism.

Definition 1.20. Suppose f € C"(M,N), a point p € f(M) is called a regular value if for any z € f=1(p),
the derivative of f at x is surjective.

Proposition 1.21. Let f : U — R¥ be a C"-map from an open set in R™, b a reqular value and M = f~1(b).
Then M is a C"-submanifold of R™.

Proof. (a) For any a € M, the jacobian matrix of f at a is of rank r since the differential is surjective.
Consider the map F : U — R",z — (f(2), Zkt1, - ,Tn), its jacobian JF(a) is of rank n. By the inverse
function theorem, there exists V3 cC R*, V5, cc R* % and a C"-inverse G : Vi x Vo — W with b € V4,
(ars1,-++ ,apn) € Vo and W = G(V; x V3) defined on a open neighbourhood of (b, ag41,- - ,ay) such that

z=(FoG)(2)=(f(G),G@)k+1, ,G@)n),
which implies
(f © G)(l‘h e xn) = (331, o ’xk)'

therefore g = G(b,-) : Vo — W N M is a bijective C'-map. Denote h: W N M — {0} x Va,z — (0,97 (z)),
then W N M = h=}({b} x R"F). Hence M is a n — k dimensional submanifold. From another point view,
h:WNM — R"" is a chart for the manifold M. O

Theorem 1.22 (Regular value theorem). Let f € C"(M,N), r > 1, and q € f(M) be a regular value of f,
then f=Y(q) is a C"-submanifold of M of dimension dim M — dim N

Proof. For all x € f~1(q), take a chart (¢,U) around x such that fo@~!(U) is contained in one chart (1, V)
in N. Suppose g: o 1(U) — R",¢po fop~! since p is a regular value of g, by proposition there exists
(¢',U") such that o'~ 1({0} x R™™) = U'Ng~1(p) =2 p(U")N f~L(p), thus f~1(q) is a submanifold of M. O

Example 1.23. Suppose f:R? — R : (x,y) — y? — 23. The derivative of f~1(0) is zero only at (0,0) and
£71(0) is not a C*'-manifold.

3Found by John Milnor in 1956.
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Example 1.24. For 0 < r; < rg, define a torus:

M= {(r9,2) €RY| (VP 5 o) 422 = 1d)
then M is a C'-manifold of R3, and M is C'-diffeomorphic to S x S*.
Proof. Apply proposition here. Let F(x,y,2) = (\/22+y2 —r9)? + 22 —r}, then M = F~1(0). Take

(x07y0a20) € M’ claim that DF(x07yOaZO) 7é (07030)
If zg # 0, then F.(zo,yo0,20) = 220 # 0. If 2o = 0 and xg # 0, then

OF |zo| |12
| oAl Inml
Vai+vg Vg9l

%(xo,yo, Zo)

If zg = 0 and 29 = 0 but yy # 0, then
S 030:0) = Il #0
therefore M is indeed a submanifold. For the second part, suppose a map
P:S'x 8" = M, (a,0) — (rocos@ + 11 cosacos B, rysin f 4 71 cos asin 6, rq sin )
where «, 6 € [0,27). P is smooth, and its inverse can be given easily and also smooth, therefore P is a
diffeomorphism. O

Definition 1.25. Suppose (M, as) a C*®-manifold, and p € M. Define the stalk at p (of the sheaf of all
smooth functions of M)

C(M,R), ={(f,U)| fe C=(UR),UCC M,pe U}/ ~

with (f,U) ~ (g,V) iff there exists open set W such that flyw = glw. The equivalence class [f,U], in
C*(M,R), is called the germ of (f,U) and p. An R-linear map 9 : C*°(M,R), — R that satisfies the
Leibniz rule d([fglp,) = f(p)9([glp) + g(p)O([f]p) is called a derivative.

Example 1.26. An example of derivatives:

d(f o~ (o(p) + tv))
dt t=0

where f oo (p(p) + tv) is seen as a function from R to R when differentiating.

Opp: C(M,R), = R,[f], —

Definition 1.27. Let (M, ) be a smooth manifold. Take p € M, and I an open interval.

(a) A C"-curve c: I — M is said to start at p if 0 € I and ¢(0) = p.

(b) Two C"-curves ¢: I — M and d : J — M with 0 € I N J are called jet-equivalent if ¢(0) = d(0) and
3(p,U) € a, around ¢(0) such that (o ¢)®(0) = (¢ o d)?D(0) for 1 <i <.

Remark 1.28. (a) Let (M, a,) be a Cl-manifold and ¢ : I — M and d : J — M Cl-curves starting at
po € M, then Tyc = Tod iff they are jet-equivalent, since Tye([0,idy, I, 1]) = [p, ¢, U, (¢ o ¢)’(0)].
(b) The set Der,(M) = {A: C>®°(M,R), — R | Ais a derivative} is called the set of derivatives at p.

Lemma 1.29. Let M™ be a C*®-manifold and (¢,U) be a C®-chart of M and p € U. Suppose that
o(p) =0€R™. Let p; : U — R be the i-th coordinate of ¢, i.e. ¢ = (Y1, ,¢n), then the map

® : Der,(M) — R™, A (A1), , A(n))

is an R-linear isomorphism.
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Proof. The map is R-linear via construction. To see it is surjective, take v € R", define A, € Der,(M) via
Ay (fy) = df (971 (tv)) /dt|i—o, then A(p;) = d(m;opop~1(tv))/dt = v;, where 7; is the coordinate projection.
Therefore ®(A,) = v.

Now verify its injectivity. Claim that ker(®) = {0}. Suppose A € ker(®), then A(¢1) =--- = A(p,) = 0.
Take f, € C*°(M,R), and point ¢ around p, then

f@) = fp)=(foe " )(e1(@),- -, enla) — (foe ")(0)

by the fundamental theorem of calculus,

f@)—f@%:A “f°¢*ﬂwg?~~,wM@»ﬁ

=St [ HE et

n 1 op~ L
=Sen. s - [ Dt

thus

n

Alfy) =D Alesgi) = D _(¢5(P)Alg;) + 95 (P)Alg;)) = 0

j=1
therefore D = 0. Note that the inverse of ®, ¥ : R" — Der, M is given by

d(— -1
L d=op (1)
dt t=0
it can be easily verified that ® o ¥ =id and ¥ o & = id. O

Proposition 1.30. Let M be C'-manifold and p € M, and let the collection of jet-equivalence classes of
C*-curves starting at P be C(M). Then T,M = C(M) naturally, i.e. for every map f € C*(M,N), diagram

T,M —>— C(M)

le ch
TypN —— C(N)
commutes, where Cy : C(M) — C(N),[c] — [foc].
Proof. The isomorphism is g : T,M — C, [p, ¢, U, v] — [c] with c(t) = ¢~ (¢(p) +tv), and its inverse is given
by h:[c] — [p, ¢, U, (¢ oc)(0)]. It is indeed an isomorphism, since

hog([p,»,U,v]) = [p, »,U, %(sﬂ(p) +tw)] = [p, , U, 0]

and
goh([d) = [~ (¢(p)) +t(poc)(0)] = [d]
and the diagram commutes since
goTf([p,e,Uv]) = [~ (o f(p) +tD(o fop™)(p)v)]
= [fop™ (e(p) +tv)] = Cy o g(lp, ¢, U, )
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Proposition 1.31. Let M be a C*°-manifold and p € M. Then T,M = Der,(M) naturally, i.e. for every
map f € C°(M,N), diagram
Der,M —~— T,M
[ [s
Der )N —— Ty N
commutes, where Rf : A(—) — A(—o f)

Proof. The isomorphism is g : Der,(M) — T,M, A — [p,,U, ®(A)]. g is an R-linear homeomorphism by
lemma [[.229 Since )
Ao f o ™) (1) (1)

, V= - ,
dt t=0 A(Son)

Ao f) =

by the chain rule

n ot
(90 Rp(A))i = A(ti o f) = ZA(%.)W

Jj=1

= (Do fop N)p)v)i = (Tfog(A))

therefore the diagram commutes. O

Remark 1.32. (a) The tangent vectors [p, p,e1], - ,[p, ¥, en] are denoted by 6901 lps - - - %b, emphasizing
their description as derivatives.

(b) For a C"-manifold M", define a C"~!-differentiable structure on T'M with charts (¢,U) € a,., Ty :
TU — @(U) x R™, [p, ¢, U,v] = (¢(p),v). Obviously it is bijective and R-linear, to see it is C"~!, compute
the overlaps: for (¢,U), (¥, V) € a,,

(To)(TY) ™ (¥ (p), w) = (¢(p), D(p o ™) (¥(p))w)

the second component is of C" 1.

Definition 1.33. Let (M, o) be a smooth manifold, its tangent bundle TM is said to be trivial if there
exists a C"~!-diffeomorphism F : TM — M x R™ such that diagram

™ ——F s M xR

commutes, where the maps TM — M and M x R™ — M are canonical projections.

Example 1.34. (a) For S!, a trivialization is given by T'S* — S x R, [p, ¢, U,v] — (p, v).
(b) M ={P(0,s) |0 € (—m,7],s € (—1,1)}, where

P0,s) = <2C059+scosZcos@,2sin9+scosZsin&ssin Z)

then M is a mobius strip. Its tangent bundle is not trivial.

Proof. Consider the following C*°-maps:

Ei(0) :R—TM,0 — <P(0,0) (29 (0, 0))

Ey(0) : R — TM,0 (P(e,o), %s(e,o))
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Assume there is a trivialization ®, let f; = m o ® o E;, where m : M x R? — R? is the projection. Since
for each 6 € R, span{fi(0), f2(0)} = R?, therefore det(f1(0), f2(6)) # 0. However, since det(f1(0), f2(0)) =
— det(f1(27), f2(27)), by applying the intermediate value theorem there is a contradiction. O

Definition 1.35. Let (M", a,) be a smooth manifold, i.e. r > 1, a map X € C"~Y(M,TM) such that
X (p) € T,M for all p € M is called a C"!-vector field.

Proposition 1.36. Let (M,«;) be a smooth manifold, then TM s trivial iff there exist X1,--- , X, (C"~ -
vector fields) on M such that for all p, span{Xi(p),--- ,Xn(p)} = R".

Proof. If there exists vector fields X1, ---, X, that spans R™ for every point of M, suppose basis transfor-
mation P : {e1, - ,en} — {X1(p), -+, Xn(p)}, then the map @ : [p, ¢, U,v] — (p, P~1v) is a trivialization.
To verify it is well defined, suppose two charts (U, ), (V,4) with p € U NV, denote T = D(¢) o o~ 1)(p).
Then for the basis transformation P’ : {e1, - ,en} = {TX1(p), - ,TXn(p)}, one have P' = TP. Thus

o([p, v, V. Tv)) = (p, (TP)"'Tv) = (p, P~ 'v)
On the other hand, if T'M is trivializable, suppose a trivialization ®, then just take X;(p) = ®(p,e;). O

Remark 1.37. The map F5 in example cannot be extended to a vector field over M because it cannot
be defined on S! since F(0) # E(27).

Definition 1.38. Let M and N be C"-manifolds (r > 1), f € C*(M,N) and p € M.
(a) The map f is called immersive (submersive) at p if T}, f : T,M — Ty, N is injective (surjective).
(b) The map f is called an immersion (submersion) if f is immersive (submersive at every point of M).
(c) Suppose f is a C"-map, it is called a C"-embedding if: f is a C"-submanifold of N and f : M — f(M)
is a C"-diffeomorphism.

Proposition 1.39. Let f € C"(M™,N™) (r > 1) be injective. Then f is a C"-embedding iff [ is an
immersion and f: M — f(M) is a homeomorphism.

Proof. = is trivial. For the other direction, first show that f(M) is a C"-submanifold of N. For any p € M,
take local charts (¢, V') and ¢ containing p and f(p) on M and N with ¢(f(p)) = 0 and ¢(p) = 0 respectively.
Let g=1o0 foe ':V — R" Then

9gi

D(70) - (5

has full rank m. By exchanging coordinates, the square matrix

9gi .
— < <
(Fw). 1<ij<m

is of full rank and therefore invertible. Let g, = (g1, -+ ,9m) and gy = (gm+1,"** ,9gn), by the inverse
function theorem there exists W C V and Z C R™ both open with 0 € W N Z such that g, |lw : W — Z is a

C"-diffeomorphism. Let U = (Z x R*™)\g(V\W). Then U N g(V\W) = & and claim that g(W) C U.

Assume there exists w € W such that g(w) € g(V\W), since g is a homeomorphism, there exists a
sequence of points v,, € V\W such that g(v,) — g(w) and hence v,, — w. Since V\W is a closed set of V,
w € V\W, leading to a contradiction, thus verifying the claim.

Now define ¢ : U — R", (2,y) = (2,y — gg(ggl(g))), then

(0)>, I<i<nl<j<m

vy =" 0 |

*  Lo_m
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has full rank. Therefore ¢ : U — ¢(U) is a C"-diffeomorphism, with
T (R™ x {0}) = {(z.y) €U | Fw € Wyg(w) = (z,y)} = g(W)NU =g(V)NU.

therefore f(M) is indeed a submanifold of N. To show that M is diffeomorphic to f(M), notice that f is
already a homeomorphism, so one only need to indicate it has local inverse everywhere, whose existence is
implied by the inverse function theorem on f. O

Remark 1.40. If M is compact, then the an injective immersion f is an embeddings since f(M) is Hausdorff,
and f: M — f(M) is bijective and continuous, meaning f : M — f(M) is a homeomorphism already.

Example 1.41. The map f : ST — S* x St exp(if) — (exp(if),exp(i26)) is an embedding, because its
derivative is of full rank everywhere and S! is compact.

Remark 1.42 (Construction of bump functions). First, construct a function g : R — [0, 1],

1, tel[-1,1]
g(t) =10, te(—oo0,—2]U[2,00)

fE=1t), tel-2,-1U[L2]

with
F(t) =exp [ 1- -
1—t2exp <1 - 7§2>

g is smooth, with ¢g(t) = 1 when [t| < 1 and g¢(¢) = 0 when g(¢t) > 2. This gives the bump functions
by : R™ = [0,1],b,(z) = g(|z]2). Also denote Bs(zy) = {z € R | |z — 2|2 < s}

Theorem 1.43. Let M be a compact C"-manifold for some 1 < r < oo, then there exists g € N and
f: M — R™ such that f is a C"-embedding.

Proof. Since M is compact, there exists m € N and C"-charts (p1,U1), -+, (¢m,Um) such that B3(0) C
#i(U;) and UL, @7 (B (0)) = M. Define

bilp) = {mp)bnwp)), pev;

and f; - M — R via fi = (¢i,bp 0 ), and f: M — R™HD f — (f, ... f.). Since f; is a immersive
for all p € U, f is an injective immersion, therefore it is an embedding because M is compact. O

Theorem 1.44 (Easy Whitney embedding theorem). Let M™ be a compact C"-manifold with 2 < r < oo,
then there is a C"-embedding of M into RZ"+1,

Proof. By theorem M embeds in some RY?. If ¢ < 2n+ 1, there is nothing to prove. Assume ¢ > 2n+ 1.
Replace M by its image under an embedding, therefore M is a C"-submanifold of R?. It is sufficient to prove
that such an M embeds in R?™!, for repetition of the argument will eventually embed M into R?7*1,

Suppose M C RY, ¢ > 2n + 1. Identify R9"! with {z € R? : 2, = 0}. For v € ST N\R?! x {0}, let
7y : R? — R27! be the projection onto R9~! parallel to v. For the projection to be an injective immersion,
choose v such that:

(1) For all P,Q € M, v # P-Q

P -Ql
(2) For all [p,w] e TM C M xR?, v # X This makes sure 7, 1s an immersion.

|wl

This makes sure , is injective.
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Since M is compact, the projection constructed is an embedding. Now need to show that such v does
exist. Denote (T'M); = {[z,,U,w] € TM | |w|2 = 1}, consider the map o and p:

P-Q
o:MxM\A— ST o(PQ) = — -
\ (7Q) [P = Ql2
p: (TM), = ST [z,0,Uw]—w
since M x M\A is a manifold of dimension 2n, and (T'M); is a manifold of dimension 2n — 1, for ¢ > 2n+1,

by lemma m the image of both o and p have empty interior in S9!, therefore (R?7~! x {0} N S9~1) U
im () Uim (p) has empty interior, and therefore not equal to S9!, such v exists. O

Lemma 1.45. Let f € C*(M,N) and dim M < dim N, then int y(f(M)) = @.

Proof. Recall that in measure theory, any subset X C R™ has measure zero (\,(X) = 0) iff for any € > 0,
there exists {C; }ien a sequence of cubes with X C |2, C;, and Y .=, Vol(C;) < e. Extend that definition
to subsets of manifolds, i.e. X C M (M is a C'-manifold) has measure zero iff for any charts (,U) € a,
©(U N X) has measure zero in R”.
Suppose f € C*(M,N) and dim M < dim N, take charts {(¢;,U;)} on M such that f maps it to a chart
in N. For each i, denote f; : U — R", f; =1, 0 fo gpi’l and
g:UxR"™ =R, g(z,y) = fi(z)

then f;(U) = g(U x{0}). Since U x {0} is of measure zero, f;(U) is of measure zero by lemma Therefore
f(M) is of measure zero by lemma [1.47} Hence f(M) has empty interior by lemma [T.46] O

Lemma 1.46. A measure zero set has empty interior.
Proof. This is trivial since open sets are not of measure zero. ([l
Lemma 1.47. X CR" has measure zero iff Vo € X, U CR™ open with x € U : A\({UN X) = 0.

Proof. One direction is trivial. For the other direction, for x € X, let U, the open set such that x € U, and
AUz N X) = 0. Furthur more, for each z € X, one can find a ball B, (g,) with r, € QN (0, 00) and ¢, € Q"
such that = € B, (gz) € U,. Suppose B = {B,,(q.) | x € X}, B is countable. Since X = [Jz.5 BN X and
A (BN X) =0 for each B € B, X is of measure zero. O

Lemma 1.48. Let U CR" and g € CY(U,R"™) and X C U with measure zero. Then \,(g(X)) = 0.

Proof. By lemma one can restrict to the case where ||D(g)(p)||e < K and U is a ball. For all z,y € U,
one has

l9(x) —g(y)l2 < K|z —yl,
therefore the image of a cube of edge length [ under g is contained in a cube of edge length [K+/n. If X is
covered by cubes C; with >°:° Vol(C;) < e, then g(X) is covered by cubes C/ with

> Vol(C)) < eK™
=1

thus A, (g9(X)) = 0. O
Definition 1.49. For A € L(R™,R), H = {z € R" | A(z) > 0} is called a half space.

Definition 1.50. Let M be a topological space that satisfies conditions listed in remark M is called
a manifold with boundary if Vo € M, there exists a pair (¢, U) with U open in M and ¢ : U — H such that
¢ : U = ¢(U) is a homeomorphism. p € M is called a boundary point if there exists a chart such that p is
mapped to 0H. The collection of all such points is called the boundary of M, denoted by OM.
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Remark 1.51. The definition of charts, atlases etc. can be generalized to manifolds with boundaries.

Example 1.52. (a) A half space H is a manifold with boundary.

(b) Let f € C(R™ Y R) and M = {(z,y) € R™}, ¢ : M — R™, p(x,y) = (x,y — f(x)) is a chart for M.

(c) D? is a smooth manifold with boundary. Provide an atlas: @1 : B1(0) — Bi1(0), (z,y) — (x,y),
P2 - {(m,y) € D? I z > O} - RQ,(x,y) = (33— 1_2/2’3/)7 ¥3 - {(m,y) € D? ‘ y > O} - RQ’('r7y) =
(z,y — V1 —122), p4 and @5 may be constructed similarly.

(d) Let M be a C*°-manifold with OM = @ and (¢,U) € as. Let B be an open ball in ¢(U), then
M\yp~1(B) is a manifold with boundary OM = ¢~1(9B).

Definition 1.53. Let U be an open set in a half space H of R, and 0 < r < oo, define C" (U, R™) to be the
collection of continuous maps f : U — R™ such that all the partial derivatives up to order r are continuous.

Proposition 1.54. Let H be a half space of R", U C H be open in H, 0 < r < oo and f € C"(U,R™).
Then there exists V. C R™ open with U CV and g € C"(V,R™) such that gl = f.

Proof. The case r = oo will not be proved herﬂ For the case where 0 < r < oo, if H = R", then the proof
is done. Otherwise w.l.o.g assume H = R"~! x [0, 00). Define

then V is open. Define

_ f(&v y)7 (Q, y) el
g(z,y) = Z;S i f(z, —%), (z,y) € V\U

such that ci,--- ,¢,41 € R satisfies
r+1 _1 k
ch — | =1, k=0,---,r
=t N
the determinant of this linear equation (Van der Monde determinant) is non-zero, therefore such ¢; exists. 0O
Example 1.55. For f € C*((—1,0],R), f(z) = (1 + x)?, proposition says
1+2)%, 2€(-1,0
sy = {00 ae (10
(14+2)* =322, 2€(0,1)
is a C! extension.

Definition 1.56. N C R" is called a C"-submanifold of dimension k if for all p € N, there exists (¢, U) € a,
with p € U and a half space H of R* such that ¢~'(H x {0}) = NNU. For N C M where M is a C"-
manifold, N is said to be a k-dimensional C"-submanifold if for all p € N, there exists (¢,U) € a, with
p € U such that ¢(U N N) is a C"-submanifold of R™.

Definition 1.57. Let N™ be a C"-submanifold of M™. Then N is said to be neat if
(1) ON = (OM) N N;
(2) For all p € N, there exists (p,U) € o, such that NNU = ¢~ (R" x {0}).

41t is done in “Analytic extensions of differential functions defined in closed sets” by Whitney.
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Example 1.58. Consider the following C1-submanifold of B;(0) shown as (A), (B), (C), (D). The subman-
ifolds are indicated with dash lines. The submanifolds contain the point where it intersects the boundary of
B1(0). In (C), the other end of the line is open; in (D), the line is closed. Only (A) shows a neat submanifold.
(B) fails both two requirements in definition (C) only fails definition [L.57] (2); (D) only fails definition

(1).
A B C D

Definition 1.59. A C"-embedding is called neat if the image is a neat C"-submanifold.
Example 1.60. The embedding from [—1,1] to the submanifold in graph (A) is a neat embedding.
Theorem 1.61. Let M™ be a C"-compact manifold, then there exists a neat C"-embedding into R?" x [0, 00).
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2. APPROXIMATION

Definition 2.1. Let X be a topological space and A = (A;);cs be a family of subsets of X.
(a) A'is called a covering of X if X = J,c; A;. If all A; is open, then it is called an open covering.
(b) A is called locally finite if for all z € X, there exists U an open neighbourhood of X such that

Hiel|AiNU# o} < oo

(c) Let A and B = (B;);es be coverings of X. B is called a refinement of A if for all j € J, 3i € I such
that B; C A;, and B is called a shrinking of A if J =TI and E C Aj.
Definition 2.2. Let U = (U;);c; be an open covering of a topological space X. A family A = (\;);c; where
A € C(X,]0,1]) is called a partition of unity subordinated to U if

(a) Vi € I, supp(\;) = {z € X | \i(z) #0} C Uy;

(b) supp (A;)1 is locally finite;

() Ve e X', > . hi(x) = 1.
Remark 2.3. Partition of unity provides a way to build a global function out of local components. Also,
given an open cover A with a partition of unity A, then (int (supp (A;)))s is a locally finite cover.

Proof. Vx € X, since ), .; A\i(x) = 1, there exists 79 € I such that s, (z) > 0. Therefore x € )\i_ol((O, 1]) C
int (supp (A;)). Since (supp (A;))r is locally finite, int (supp (A;))r is locally finite. O
Example 2.4. (a) Suppose X =R, A = {R}, then A = {1g} is a partition of unity.

(b) Suppose X = St Uy = S1\{-1}, Uy = S"\{1}, A = {U;,Us}. Then let

A1(exp(if)) = exp <<9 — ﬂ/4)29 — 777/4)) , 0e€(m/4,7r/4) (takes 0 otherwise)

i€l

and
1

((9 —3m/4)(0 + 37/4)

Az (exp(if)) = exp

) , 0¢€(—3n/4,37/4) (takes 0 otherwise)

Suppose for x € S,
Ai
Me) = =28
A1(z) + Aa(z)
then the support of \; is just supp(A;(x)) C U;, and since A\; + Ay = 1, they constitutes a partition of unity.

Theorem 2.5. Let M be a C"-manifold, then every open cover of M has subordinate partition of unity.

Proof. Let U = (U;); be an open cover of M. By lemma one may take (¢4, Va)aca a locally finite atlas
such that (704)046 A refines U and ¢, (V,) C R™ is bounded and each V,, is compact. By lemma there is
a shrinking {W,}aca of V = {V,}aea, and each W, C V,, is compact. By lemma it suffices to find a
C" partition of unity subordinate to V.

For each « € A, cover the compact set ¢, (W, ) by a finite number of closed balls B(a, 1), , B(a, k(a))
contained in ¢4 (V,). Choose C* bump functions Ay ; : R™ — [0, 1] for j = 1,- - , k() such that A, j(x) >0
iff € int B(«, j). Put

k(a)
Ao = Z Aa,j : R™ — [0, 00)
j=1

then A\, (z) > 0 if 2 € po(Wy) and Ao (z) =0 if x € R™\UJ; B(a, j). Put po : M — [0, 00):

) Xalpa(), zeVy
Ha() = {0, z e M\V,
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then pg is C", e > 0 on W, and supp ta C Vo. Then vy = pa/ )", Ha is a partition of unity on V. O

Lemma 2.6. Let B and A be open covers of X such that A refines B. Then B has a partition of unity if A
has one.

Proof. Let (\;); be a partition of unity subordinated to A. Since A refines B, suppose a map f : I — J
such that A; C By;. Put M; = Zieffl(j) Aj. Claim that Mj is a partition of unity on B.
Since supp (M;) € U, e p-1(j) supp (Ai) € U;ep-1(;) Ai € Bj and

S M) =>" > N@) = Aiz)=1

jeJd JETief-1(j) iel
M satisfies definition [2.2] (a) (c). For definition [2.2] (b), note that there exists an open neighbourhood U for
any = € X such that S = {i € I | UNsupp(\;) # @} is finite. Take j € J such that supp (M;) N U # @,
then 3i € I such that f(i) = j and supp (A\;) NU # @. Thus i € S, and therefore j = f(i) € f(S), where
f(S) is finite. O

Lemma 2.7. Suppose U = (U;)r is an open cover of M. Then there is a locally finite atlas (Ya, Va)aca
such that:

(1) (Vo)aca refines U; o

(2) pa(Vo) CR™ is bounded and V, C M is compact for each a € A.

Proof. For each x € M, suppose x € (U;, ¢;), then there exists ¢ such that B.(y;(z)) C ¢;(U;). Then put
Wi = ¢; (Bej2(pi(2))) and W = (W ;) a1, it is clear that W covers M. Since M is paracompact, there
is a locally finite refinement V of W. It is easy to verify that V is the cover required. ]

Lemma 2.8 (Shrinking lemma). Let X be a Ty topological space, and let (U;); be a point finite open cover.
Then it has a shrinking.

Proof. Consider the set S of pairs (J, V) consisting of a subset J C I and an I-indexed set of open subsets
V = {V;}; with the property that:

() (ieJcl) = (V;CU);

(2) (i € I\J) = (Vi = Uy);

(3) {Vi}ier is an open cover of X.

Equip the set S with a partial order < by setting

(J1,V) < (J2, W) & (J1 C Jo, Vi, (Vi = Wy))

then an element of (S, <) with J = I would be the shrinking required. First, claim that a maximal element
of (S, <) has J = I. For assume on contrary that there were ¢ € I'\J. By lemma one may replace that
single V; with a smaller open set V/ to obtain V', then (J,V) < (J U {i},V’), contradiction.

Now show that the maximal element exists. By Zorn’s lemma, one need to check that every totally ordered
subset in (5, <) has an upper bound. Let T' C S be one such subset. Suppose K = U(Jy)eT J, and define
W = (W;)r as following:

(1) For i € K, pick any (J,V) in T with ¢ € J and set W; = V;. This is well defined by the assumption
that T is totally ordered.

(2) For i € I\K define W; = U;.

If (K, W) € S, then it is a upper bound of T' by construction. Thus it remains to show that (K, W) € S,
ie. (W;)r is a cover of X.

Take any x € X, for all t = (J,V) € T, denote J = J;, V =V, = (V}});. Suppose S,.(t) ={i € I | x € V}}}.
Since (U;); is a point finite cover, V; is also a point finite cover, therefore 0 < |S, ()] < oo. It is also
clear that if ¢; < to, then S,(t5) C S,(t1). By lemma Mier Sz(t) # @. Since W; can be written as
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W; = (Ner Vi, it immediately follows that (,cp S2(t) = {i € I | x € W;} # @. Therefore € U;jc/W;,
hence (K, W) is indeed an element of S. O

Lemma 2.9. Let X be a Ty topological space and let {Uy,Us} be an open cover. Then there exists an open
set Vi C X whose closure is contained in Uy and such that {V1,Us} is still an open covering of X.

Proof. Since X = Uy U Us, X\U; are disjoint closed subsets. Since X is Ty, there exist disjoint open sets
X\Us; € Vi and X\U; C Vo, and V7 € X\V, C U;. Since X\V5 is closed, Vi C U;. O

Lemma 2.10. Suppose a totally ordered set T, and sets Sy for t € T such that: (1) 0 < |S;| < 0o for each
te T,' (2) St2 g Stl thl S tg; then ntGT St 7£ .

Proof. Claim that there exists to such that |(,c; St| = |S¢,|. For assume on contrary that such ¢, does
not exist. Then for any ¢; € T, there always exists to € T with t5 > ¢; such that |Sg,| < |St,|. Since
0 < |St, | < o0, contradiction. O

Definition 2.11. Suppose 0 < r < co. The weak topology on C" (M, N) is the coarest topology containing
the sets N"(f, (p,U), (¥, V), K,¢) for f € C"(M,N), (p,U) € o, (¢,V) € B, such that K C U, f(K) CV
and € > 0. N"(f, (¢,U), (¥, V), K,¢) is a collection of g € C"(M, N) such that

(1) g(K) C V;

(2) [|DW (o fop™)(z) = D®(hogoe ) (z)||lx <& foralzep(K)and k=0,---,r.

Remark 2.12. (a) Recall the norm || - || : LR™, L(R™,--- , L(R™,R™))) — R can be taken as
1Fl[x = > |F(eir)(ei) -+ (eir)]
(i17"' ,i}c)e{l,"',m}k
for example, for f € C2(R™,R),

m

1D @0 = |F @), 1DV () @)h =
i=1
(b) Suppose M =R, f € C*(R,R), f(z) = 2?, g(x) = 2* +2%/1000, K = [-1,1], and (p,U) = (,V) =
(id,R). Then g € N2(f, K,1/100) but g ¢ N2(f, K,1/200).
(¢) The weak topology does not control the behavior at infinity, since it only concerns compact sets.

0% f

, D2 (N@lle ="

i=1 j=1

of

Definition 2.13. The strong topology is the coarest topology containing the sets

Nr(fa (I), \117 K7 E) = m Nr(f7 (@Za U’L)a (%7 ‘/1)7 Ki7 Ei)
iel
where ® = (¢;,U;)s is a locally finite family of C"-charts of M, ¥ = (¢;,V;)r is a set of C"-charts of N,
K = (K;); with K; C U; and compact, € = (g;); with ¢; > 0, and f € C"(M, N) with f(K;) C V; for all
iel.

Remark 2.14. Denote the weak and strong topology on C"(M, N) with C,(M,N) and CI(M,N). The
r =00 and r = w case will be defined in definition [2.16i

Example 2.15. (a) Suppose M = N =R, § >0, I = Z, (p;,U;) = (id,(2i,2i + 1)), (¢4, Vi) = (id,R),
K;=[20+62i+1-94], f € C"(M,N), and € = (g;)z where ; — 0. Let g be the function shown in the
following graph, then g € N°(f,®, ¥, K,¢) but g ¢ N'(f,®, V¥, K, ¢), since super , |9'(x) — f'(x)] > e_1.
(b) C2(R,R) and C?(R,R) are not the same as CIO\-HOQ(R’ R). To see this, consider f,(z) = 1/n, then
fn—0in C0, (R,R), but f, /4 0in C%(R,R) since for all n € N, f,, & N(0,®, ¥, K, &) where (¢;,U;) =
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(id, (24,2 + 1)), (¢4, Vi) = (id,R) and K; = [2i + 1/4,2i + 3/4], ¢, = 1/(1 + |i|]). For the weak topology,
construct a sequence of bump functions that supported by [n,n + 1].
(¢) If OM = ON = @, then emb” (M, N) is open in C? (M, N), but wrong for the weak topology.

Definition 2.16. The weak topology on C°°(M, N) is defined to be the coarest topology such that all the
inclusions C*°(M,N) — C"(M,N) for 0 < r < oo are continuous. The strong topology on C*° (M, N)

is defined similarly. The weak and strong topology on C* (M, N) is the subspace topology induced from
C>®(M,N).

Proposition 2.17. Let M, N be smooth manifolds and M be compact. Then the strong and weak topology
on C"(M,N) coincide.

Proof. f U C C"(M,N) is open in the weak topology, it is open in the strong topology by definition. For
the inverse implication, suppose a base for the strong topology N7 (f,®, V¥, K,e). Since ® = (p;,U;)s is
a locally finite family of charts, for any « € M, there exists N, an open neighbourhood of z such that

I, ={ie€I|N,NU; # @} is finite. Since M is compact, there exists x1,--- , 2, such that M = [J;_, N,,.
Then I = |JI, I, is also finite. Therefore N"(f,®, ¥, K,e) = (_y N"(f, (v, U;), (¥:, Vi), K;,€;) is an
open set in the weak topology. |

Proposition 2.18. Suppose 0 < r < t, M, N smooth manifolds and U is an open subset of CT(M,N), then
CY(M,N)NU is open in Ct(M,N).

Proof. For all f € C{(M,N)NU, since U is open in CT (M, N), there exists N"(f,®, ¥, K,e) C U. By
Nt(f’ ¢7 W’ K7€) C Nr(f7 é’ W? K78)DC§(M’ N)
one gets N'(f,®, U, K,e) CUNCLM,N). O

Remark 2.19. For r > 1, denote imm” (M, N), subm" (M, N), emb” (M, N), emb_ (M, N), diff" (M, N) to be
the set of C" immersions, submersions, embeddings, closed embeddings and diffeomorphisms from M to N
respectively.

Theorem 2.20. Suppose M, N are C"-manifolds and r > 1, then:
(a) imm" (M, N) is open in CT (M, N).
(b) subm” (M, N) is open in CT(M,N).
(¢) Suppose OM = ON = @, then diff" (M, N) is open in CT(M,N).

Proof. (a) Since imm”" (M, N) = imm'(M, N) N C"(M, N), it suffices to prove that imm'(M, N) is open.
Suppose f : M — N is a C! immersion, choose a neighbourhood N'(f, ®, ¥, K, ¢) as follows. Let W0 =
{13, Vs}sen be any atlas for N. Pick an atlas ® = {¢;, U, }ser for M so that each U, has compact closure,
and for each ¢ € I there exists 8; € B such that f(U;) C Vg,. Put Vs, = Vi, ¥g, = ¢; and ® = {4, Vi }ier.
Let K = (K;);c; be a compact cover of M with K; C U;. Endow the set L(R™,R™) with the topology
induced by the metric || - ||;. Then set

Ay ={D(io fop; ')(z) € LR™R") | x € pi(Ki)}

is a compact set since the map f: K; — A;, 2 — D(¢;0 fo <pi_1)(x) is a continuous surjective map. Denote
I to the set of all injective linear maps from R™ to R™, then I is open in L(R™ R") = L, and A; C I.

Claim that d(A;, L\I) > 0. For assume on contrary d(A;, L\I) = 0. Then for all € > 0, there exists a € A;
and ¢ € L\I such that 0 < d(a,t) < e. Take £, = 1/n for n € NT, then for each n there are a,, € A; and
t, € L\I such that 0 < d(ay,t,) < 1/n. Since A; is compact, the sequence a,, has a convergent subsequence
ay, for i € NT. Denote ag = lim;_ o ay,, then 0 < d(a,t,,) < d(a,an,;) + d(an,,tn,), hence d(a,t,,) — 0 as
i — oo. Thus lim; o t,, = a. Since L\I is closed, a € L\I, contradiction.
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Since d(A;, L\I) > 0, take ¢; such that d(A;, L\I) > ¢;. Then for all T € L, if ||T — S|| < ¢; for some
S € A, then T € I. Let € = (&)1, then N"(f,®, ¥, K,¢) C imm'(M, N).

The same argument goes for (b). For (c), observe that when M = ON = &, diff"” = emb (M, N) N
subm” (M, N) is a intersection of two open maps by remark (b). O

Remark 2.21. (a) Theorem [2.20] (c) is wrong if manifolds with boundaries are considered. Take M = N =
[0,1], f =ida and gs(x) = 6 +x(1 —26). Then lims_,ogs = f € CL(M, N). But gs is not a diffeomorphism.
From now on, only consider manifolds without boundary.

(b) emb" (M, N), emb’ (M, N) are also open in C% (M, N). But I have not had time to look into it.

Definition 2.22. Let U C R™ open and o > 0 such that U contains a closed ball of radius . Suppose a
bump function § € C*°(R™, [0, 00)) such that suppd C B,(0) C R™ and U, = {z € U | B,(z) C U}. Define
a map CO(U,R") — C=(U,,R") via f + 0 x f, where

(6% f)(z) = / 0z - y)f(y)dy

Bo(z)

the map 0 * f is called convolution of § with f. A map 8 € C*°(R™, [0,00)) with support in B,(0) (o > 0)
is called a convolution kernel if [y, 6(y)dy = 1.

Remark 2.23. (a) Let f € C"(U,R") and K C U be compact. Denote

11l = sup{lID* (/) @)l | z € K,k =0,--- 7}
(b) In analysis it is shown that D¥(0 x f) = D*(0) « f.
(c) Suppose f € C*(U,R™), then D¥(0 « f) = 6 = D*(f) because by substituting z = z — y, one obtains

0% F)(z) = / 0(2)f(z - 2)dz

B, (0)
Proposition 2.24. Let U C R™ be open, nonempty, K C U compact and f € C"(U,R™) with 0 < r < co.
Suppose € > 0, then there exists 0 > 0 such that: (1) K C Uy; (2) for all convolution kernel 6 with
supp (0) C By (0), [|6* f = fllrr <e.

Proof. Suppose W open such that K C W C W C U where W is compact by taking W to be the union of
finitely many open balls. Since f|s is continuous and W is compact, f is uniformly continuous on W. Then
there exists o > 0 such that for all z,y € W with |z — y|2 < o, one has |f(z) — f(y)|2 < £/2. Take o smaller
than d(K,U\W) and z € K, then B -

0% f(z) — f(2)]2 =

/i 6(y)f(z — y)dy — f(z) /ﬁ 0(y)dy
B, (0) B, (0)

2

[ ey - @iy
B, (0)

2

< /i 0(y) |(f(z—y) — f@)],dy < /2

Thus the proposition is true for k = 0. For k > 1, since D* (0% f) = 0 D*(f), the same argument applies. [

Theorem 2.25. Let M and N be C*-manifolds with 1 < s < oo, then C*(M, N) is dense in CT (M, N) for
0<r<s.

Sketch proof. Unfinished! O
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Theorem 2.26. Let (M, ;) be a C"-manifold with 1 < r < co. For every s, r < s < 0o, there exists a
compactible C*®-differential structure 8 C ., and 8 is unique up to C*-diffeomorphism.

Proof. First show uniqueness. Let 5 and v be C*-differential structures in a,.. Then diff" ((M, 8), (M,v)) =
diff" (M, o), (M, oi,.)). Since id € diff" (M, o), (M, o)), diff" ((M, 8), (M,v)) # @. By theorem [2.20]
diff" (M, M) is open in CI(M,M). By theorem C*((M, B),(M,~)) is dense in C7 (M, M). Therefore
Qiff* (M, B), (M, 7)) = dii” (M, M) 1 C* (M, B), (M, 7)) # 2.

For convenience denote a differential structure and its restriction to an open set the same symbol. By
Zorn’s lemma there is a nonempty open set B C M and a C? differential structure 5 C «, on B such
that (B, ) is maximal in the partial order given by inclusions. To show the existence of a C*-differential
structure, claim that B = M.

For assume on contrary B # M. Then there exists a chart (p,U) € a, such that U N (M\B) # @. If
UNB =g, then SU{(p,U)} is a C*-atlas and B C B U U, contradicting the assumption that (B, ) is
maximal.

SoW =BNU # @. Then W C U open and there exists N C CT (W, p(W)) open such that T : N —
CT(U,p(U)) is continuous by lemma (with f = ¢ here). Thus N’ = T~Y(diff" (U, p(U))) is open. By
the definition of T', N C diff" (W, p(W)). Since » € N’, N’ is nonempty. Since C*(W, p(W)) is dense in
CT (W, (W), N'NC*(W, p(W)) # &. Suppose ¢y € N'NC*(W, o(W)), then SU{(U, T(p0))} is a C*-atlas
and B C BUU, contradiction. ]

Lemma 2.27. Let U be a C"-manifold, 0 < r < oo, and W C U an open set. Let V C R"™ be open,
f e Cr(UV), and put f(W) = V'. Then there is a neighbourhood N C CT(W,V') of flw such that if
go € N, the map

T(go)=9g:U =V

2) = go(z), xzeW
9(@) {f(m), x e U\W

isC", and T : N — C7(U,V) is continuous.

Proof. Let (p;,U;)r be a locally finite family of charts of U which covers bd W the boundary of W in U.
W.lLo.g assume that every U; is compact. Choose a shrinking (L;); of (U;);. Define N C CT(W,V') as
follows:

N ={h e C"(W,V') | VierYyep (iow)Vi=o, +[[D* (R o 07 1)(y) = D*(f o ™) ()| < d(y, 0s(U\W))}
claim that N is an open neighbourhood of f|w. Since (L;); is locally finite, take (K, )w such that each
K,, meets only finitely many L;, and then replace it with a shrinking. Since {Kg} U {U} is a cover of U,
by paracompactness W has a locally finite open cover {K,} such that each K, meets only finitely many
L;. Then the map d : K, N L; — R,z — d(pi(x), p;(U;\W)) is bounded away from 0, since (1) K, N L; is
disjoint from U;\W, (2) U;\W is closed in U;, and K, N L; is compact in U;, and then metric argument in
m (a) applies. Thus N is indeed an open neighbourhood.

Now show that the g is C". It suffices to prove that A; : ¢;(U;) — R

N(z) = {ho%l(x) —fowl(x), @€ pi(W)

is C". Obviously \; is C" in ¢;(W). For the boundary points ¢;(bd W), notice that for 0 < k < r, by the
definition of N, as d(y, ¢:;(U;\W)) = 0, D*(\;)(y) — 0 uniformly for y € ¢;(W). Therefore g is indeed C".

Finally show that T is continuous. Suppose a topological base N"(g,®, ¥, K,e) C C5(U,V). Take a
locally finite open cover (W;); of W and a compact refinement (WJ);, then ® = (p;,U; N Wj)1xy is
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still a locally finite family of charts. Then take K], = K; "W/, €}, = &; and ¥} ; = (¢;, Vi), one has

T_l(NT(g7 ¢’ W’ K78)) = Nr(g|W7©,7 Tl’ Kl,é‘/)' D
Example 2.28. Suppose M = R with C'-structure given by {(id, (—1,0)), (f, (=00, 1))} with

) (=+1/2)2—1/4, 0<z<1
T@ =102 -2 <0

it is not a C2-atlas because foid™* on (—1,1) is not C? at 0. To get a C2-atlas, modify f on (—1,1): define

> o J1a—-@a2-2)?2 z<0
f(x){ng/S—xQ—&—x, 0<z<l1

Now {(id, (—1,00)), (f, (—00,1))} is a C2-structure that is contained in the previous C-structure.
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3. DE RHaAM COMPLEX

Definition 3.1. Let U, V be R-vector spaces. Then then a pair (F,®) is called the tensor product of
U, V if F is an R-vector space and ® is a bilinear map from U X V to F such that for any bilinear map
f:U XV — Z, there is a unique linear map g : E — W such that g o ® = f, i.e. the following diagram

UxV % Z
o|
E
commutes. This is also called the universal property of tensor products.

Proposition 3.2. Let U,V be real vector spaces. Suppose there are two tensor products (E1,®1), (Fa,®2)
for them, then there is a linear isomorphism such that f o ®1 = ®o.

Proof. By the universal property of ®; and ®s, one gets the unique linear maps f and g from the following
commutative diagram:

E;

TN
~_ 9
T@l AN

. ®2 >
dp, | UxV —5 F,

/)l
J/@l s
0 f

-

Ey
then g o f is an unique map from Fy — Fy, thus go f = idg,. By interchanging the indices in the above
commutative diagram, one also gets f o g = idg,. Therefore f is indeed an isomorphism. (]
Remark 3.3. Because of proposition [3.2] one can talk about the tensor product of U and V', say U ® V.

Proposition 3.4. Let U,V be real vector spaces, then their tensor product exists.

Proof. Let T be the real vector space generated by the collection pairs Ty = {(u,v) | v € U,v € V'}. Then
the elements of T, say ¢, can be written as the finite sum of elements in Ty, i.e.

n
t= Zai(ui,vi), a; ERu; e U, €V
i=1

Put
S1 = {(aus + ug,v) — a(uy,v) — (uz,v) | a € Ryuy,us € U,v € V}
Sa = {(u,avy + v2) — a(u,v1) — (u,v2) | a € Ryu € U,v1,v9 € V}
and let S be the subspace of T' generated by S; U Ss. Let E=T/S,and f: U xV — E, (u,v) — (u,v) + S.
Claim that (E,®) is a tensor product. First observe that
flauy + uz,v) = (aug + u,v) + S = alug,v) + (ug,v) + S = af(ur,v) + f(uz,v)

Similarly f(u,av; + v2) = af(u,v1) + f(u,v2). Therefore f is a bilinear map. Now verify the universal
property. Suppose g : U X V — Z a bilinear map, let h : F — Z be a map such that g = ho f. Then h
must sends f(u,v) to g(u,v). Since Tj is a basis of T, f(u,v) spans the quotient space T'/S. Therefore h is
uniquely determined via linear extension. Observe that

h(af(ui,v) + f(uz,v)) = h(f(aur + uz,v)) = glaus + ug,v) = ah(f(u1,v)) + h(f(u2,v))
and the same argument goes for the case where one fixes u, therefore h is well-defined. O
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Definition 3.5. Let V be a real vector space. Then the wedge product of V is
VAV =V@V/span{vuv|veV}
where the canonical projection is denoted by A : (u,v) — u A v.

Proposition 3.6. Let V be a real vector space. Then for all skew-symmetric linear maps f:V xV — Z,
there is a unique linear map g : VNV — Z such that go A = f, i.e. the diagram

VXVLZ{Z

|

VAV

commutes.

Proof. This immediately follows from the universal property of quotient spaces and the universal property
of tensor products. O

Remark 3.7. Denote Ag (V) to be the collection of skew-symmetric k-linear maps. Define the wedge product
on Ai(V) via
A Ag(V) x A(V) = A (V)
1
(anb)(vr, - vp41) = Al Z Sgn(U)a(Uo(1)7 T 7Ua(k))b<vo(k+1)a e 7vo(k+l))

oESk41
There is still some calculations left undone here.

Proposition 3.8. Let V' be a finite dimensional real vector space, then ej N--- N ej

is a basis for Ap(V),

where {e1, -+ ,en} is a basis for V and 1 <ip < --- <1 <n.

Proof. Put I = (i, ---i), write e for (e;,,---e;, ) and e} for ef A---Aej . Then obviously
ey 1 1=
ejles) =
e 0, T#J

First show linear independence. Suppose >, crej = 0, then by acting e; on both sides one gets ¢; = 0.
Then show e} spans the whole space. Suppose f € Ax(V), put g = >, f(er)ej, then

gles) = flen)eiles) = fle)
I
therefore g and f agrees on all e;. By k-linearity and the alternating property, f = g. Therefore it is indeed
a basis. O
Proposition 3.9. Let V be a finite dimensional real vector space, then Ai(V) = AN*(V*) via f: \*(V*) —
Ap(V),ef N Nej el N---Nej, .

Proof. This immediately follows from the fact that f maps the basis of A"(V*) to the basis of A(V)
one-to-one. ]

Remark 3.10. Let M and N be manifolds, and f : M — N be a C*°-map, take charts (¢ = (z1,- - ,zm),U),
(Y= (y1, - ,yn),V) of M and N respectively such that f(U) C V. Then for p € U,

(17 (50) o+ 18 (50 0) ) = (e om0 ) )
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afi

W)
Oz, 1<i<n,1<j<m

whereA(p):{ s fi=yiof:U—R.

0
Proof. First, note that the tangent vectors a—(p) has been identified with derivatives. Therefore
Ly

(A = ngj o) = () = Wioe Sfj + (1)) = W

(¢(p))

and

(T,) (3<p>) (T f)(Ipr 0. Use) = [F(), .V Db o F o 0~ 0(0)es]

a.’L'j
=), ¥, V, Zeiw(w(p)ﬂ
=1

ij
=000,V 52 wed = Y- S W10, 0.Veed
= > (AwDFP)

i=1

Definition 3.11. Let M be a manifold. A differential k-form on M is a map w : M — A*(T*M) =
Upenr A" (T3 M) such that w(p) € \*(T: M) for all p € M.

Definition 3.12. Let f € C*°(M,R), using the derivative Tf : TM — TR, one may obtain a 1-form as
follows:

™ S TR 3 RxR —— R

where the last 2 maps are given by [p,id,R,v] — (p,v) — v. The map df : M — T*M is called the
differential of f.

Remark 3.13. Given coordinates ¢ = (21, ,Zm ), by definition one gets 1-forms dzq, - - - dx,,. Then

. . d
(dx1)p, - - - (dzy)p is the dual basis of 8—%(1)), e %(p)

Proof. Since
<pri><£j<p>> — [£4(p). i, B, D(z; 0 o) ((p))es]
~ o)., 2722 o))
= [zi(p),id, R, d;;]

therefore (dz;), (i(p)) = 0;j. O
j

Definition 3.14. Let M be a manifold, then the cotangent bundle of M is

T*M = | | T;M ={(p,f) | p€ M, f € T; M}
peEM
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Remark 3.15. Give a differential structure on T*M using charts (¢ = (21, , &), U) of M via T*U —
R™ x R™, (p, >t Xi(da;)p) — (0(p), A1, , Am). Tt is easy to see that a smooth form must have smooth
coefficients under local trivializations. Moreover, define the tensor bundle of type (p, q): (TM)®P® (T*M)®1
and the k-th exterior power of the cotangent bundle on M: A*(T*M). Now consider the transition functions
of the tangent bundle and the cotangent bundle. By the definition of the tangent bundle, suppose coordinate
charts (1, - ,xm) = ¢ and (y1,- -+ ,Ym) = ¢, since [p, p, U, e;] = [p,¥,V, De;] (D is the jocabian),

0 dy; 0
87307( p) = 8yZ ; O0x; (‘3yl

therefore

m 9 m m o ; 9
> vig ) =3 | Xw ajjj 5y,

i=1 \j=1

therefore transition function is (x,v) — (¢ o~ (z), Dv). In the dual space, suppose (dz;), = A(dy;)p, then

0i; = (dx;)p < ) ZAzk dyr)p <Z Dj (6yl ))
= Z AiDji0p = Z Air Dy,
ol %

therefore ADT = I, A = (DT)~!. By the same argument the transition function is (x,v) + (Yop~1(x), Av).
Definition 3.16. A differential k-form w is said to be smooth if w € C>(M, \*(M)).

Remark 3.17. Write QF(M) for the collection of all smooth differential k-forms for k = 1,2,---. For k = 0,
QO%(M) = C*°(M,R). They can be seen as R-vector spaces.

Example 3.18. (a) Find w € Q!'(R?\{0}) which satisfies

w| — g—kxﬁ =1
Yor oy)

w I’ng 2 =0
or yay N

To find such w, suppose anstaz w = adz + bdy. Then

-y
_ a=—"-,
—ay + bx =1, — xQ%—y?
ar+by =20 h= — 2
.’E2 + y2
xdy — ydz
72 + y2 :
(b) There is a map d : Q°(R2\{0}) — QY(R?\{0}), f — df. Claim that w ¢ im(d). For assume on
contrary there exists f such that w = df. Then
of xdy — ydz

of
Bxd +8 dy = 22 + 92

therefore w =

df =
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or _ _-v and of = 2 Put g(t) = f(c(t)) where

since dx,dy is a basis for each p € M, 9r ~ 2217 By iy

c(t) = (cost,sint), then

/Zﬂg’(t)dt: QﬂVf(c(t))~(c’(t))Tdt:/2ﬂ \dt = 2
0 0 0

however by the fundamental theorem of calculus,

27
/0 d'(t)dt = g(2m) — g(0) = (0) — £(0) =0

contradiction.
(c) There is another map d : Q' (R?\{0}) — Q%(R2\{0}) given by d(adz + bdy) = da A dx + db A dy, so
one has a chain

QORA{0}) —— Q'(R*\{0}) —— Q*(R*\{0})
this is called the de Rham complex of R%\0. Since

0% f

2
d(df) = 5 oy A dy + o J

Oyox
it is indeed a cochain complex. Also, since dw = 0, H},(R?\{0}) = kerd; /imdy is non-trivial. Claim that
HLp(R2\{0}) = R via

dy Ndx =0

2
O [w] — i/0 w(c (t))dt

27

By (b), since 1 € im ®, ® is surjective. For the injectivity, one needs to show that if a form w € Q' (R\{0}) is
closed, and fo '(t))dt = 0, then it is exact. Assume w = fdx + gdy. Since w is closed, dw = 0, therefore
gi (p) = x( ) for all p € R?\{0}, the integral over the boundary of a simply connected domain is always 0
by Green’s theorem. To emphasize that the vector line integrals does not depend on the parameterization,
denote |, ¢ W the integration of w counterclockwise along the curve C. Now for all p € R?\{0}, put C, a curve
that starts at (1,0) and ends at p = (rcos6,rsiné) where » > 0 and 0 € [0,27) as follows: it first moves
from (1,0) to (cosf,sin ) counterclockwise along the unit circle, then goes to p by the straitline connecting
the origin, p and (cosf,sin®). Put a(p) = pr w and claim that w = da. For p € R?\0 that not on the
positive z-axis, say p = (2o, yo), define C}, to be the line that starts at p and ends at (z¢ + h,yo). Since p is
not on the positive z-axis, h can always be taken so that C}, and C_; does not intersect the positive z-axis.
Then

aa( ) lim (p+ (h,O)) 7CL(p) fC;Lw fO $0+$

gz P = W5y h h—0 h h—>0 h

= f(»)

by the same argument one can show that %Z = g. If p is on the positive z-axis, then by the same argument
the right derivative with respect to y is still g(p). For the left derivative, for a point (xg, h) = r(cos8,sin ),
take another path C), from (1,0) clockwise along the unit circle to (cos,sin ), then again take the straitline
to (zo, h). Because the integration of w along the unit circle is zero, fc,, w = fczﬁ w. Using this, one finds

i A@EOM) —a) oyl 9(p)
h—0— h h—0— h h—0— h

therefore the derivative with respect to y is still well-defined and agrees with g on the positive z-axis.
Therefore w = df. For w = a(xz,y)dz A dy € Q*(R*\{0}), take f = [ a(x,y)dx, then d(fdy) = w, hence
HgR(R*\{0}) = 0.
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(d) Find Q*(S'). Consider S! as a submanifold of R?, then 7,S! = {aaax(p) + bg(p) | ax, + by, = 0}.
Y

Therefore Q!(S!) = C*°(SY,R)(—ydx + xdy)|psr. Although all the differential forms on S comes from the
restrictions of differential forms on R?, this is not true in general for submanifolds. For example, (0,1) is a
submanifold of R, and sin(1/z)dx is a differential form that cannot be extended to a form on R.

Definition 3.19. A quadruple (A,+: AXxA— A - :RxA— A 6:Ax A— A)is called an R-algebra if
(a) (A,+,-) is an R-vector space;
(b) (A, +,®) is a ring;
(c) Vri,m9 € R, and Vay, a2 € A, (11,a1) © (r2,a2) = (r17r2)(a1 © az).

Definition 3.20. Let A be an R-algebra, and let A; < A be sub-vector spaces for i € Ny, then A is called
a graded algebra with grading (A;)n,-

Definition 3.21. Let A be an R-algebra. An R-linear map D : A — A is called a derivation of A if it
satisfies the leibniz rule, i.e. D(ab) = D(a)b+aD(b). An R-linear map D : A — A is called an anti-derivation
of A if it satisfies the leibniz rule for anti-derivations, i.e. for all a € A;,b € A, D(ab) = D(a)b+ (—1)*aD(b).

Example 3.22. (a) Q*(M) = @2, (M) with A is a graded algebra.
(b) D : Q*(R™) — Q*(R") defined via D(3>_;ardz’) = 3", day A dz’ where I = (iy,---4;) for 1 < iy <
.o < 4; <nanddat = dzi, N--- ANdz;, is an anti-derivation that satisfies D|Q0(Rn) =dand Do D =0.

Proof. Since the wedge product and the differential d : C>°(R™) — Q(R") is R-linear, D is R-linear. Now
check the leibniz rule of anti-derivations for D. One only needs to consider the elements of the form adx!
because of the additivity of D. Then

D(adx’ A bdx”) = D(ab - sgn (p)dz'"7) = sgn (p)d(ab) A dz'7
= d(ab)dz’ A dx? = ((da)b + adb) A dz! A da”
= (da A dz') A (bdz”) + (—=1)Hadz? A db A da’
= D(adz) A (bdz”) 4+ (=1)ladz’ A D(bdz”)

thus D is indeed an anti-derivative. Obviously DIQO(Rn) = d by definition, and since

D(D(adz!)) = D(da A dz') = D (Z %d% A dx1>

i=1

Zd(aa) A dz; A dat
8951-

=1

3

n 2
g &dl‘j/\dl‘i/\dl‘l =0
‘ ial'j

i=1

<
Il
—

by linearity D o D = 0. (]
Definition 3.23. Let f € C°(M, N) and w € QF(N). Define f*w € QF(M) via

(f*w)p(vla to 7vk) = wf(P)((T;D-f)vla ) (Tpf)vk’)
it is called the pullback of w under f. f*:Q*(N) — Q*(M) is an R-algebra homomorphism.

Remark 3.24. Obviously there is (fog)* = g* o f*, and if f is a diffeomorphism, then f* is an isomorphism.
Also, f* has the local property, i.e. if wy = ws around f(p), then f*w; = f*wsy around p.
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Definition 3.25. An exterior derivative on a manifold M is an R-linear map D : Q*(M) — Q*(M) which
satisfies:

(a) D is an anti-derivation;

(b) Do D =0;

(C) D|QO(M) =d.

Theorem 3.26. Let M be a manifold, then there exists a unique exterior derivative on M.

Proof. First show uniqueness. Let D and D’ be exterior derivatives on M. Take a chart (¢,U) on M and
p € U, then for w € Q*(M), since D|y = Dy; by lemma

D(w)(p) = Dlv (w|v)(p) = Dy(wly) = D'(w)(p)

therefore D = D’. For the existence, for every chart (¢,U), there is a unique exterior derivative Dyr) :
O*(e(U)) = Q*((U)). Since ¢* is an isomorphism, it uniquely induces an exterior derivative Dy : Q*(U) —
0*(U). Define D : Q*(M) — Q*(M) via D(w)(p) = Dy (w|y)(p). Since Dy is an exterior derivative, D is
also an exterior derivative. ]

Lemma 3.27. Suppose U is an open set of R™, then it has a unique exterior derivative.

Proof. The existence follows from example (b). For the uniqueness, let D’ be another exterior derivative.
If w € Q°(U), then by definition (3), D(w) = D'(w) = dw. Now assume D agrees with D’ for all
w e @F_, (M), take adz’ € QFFL(M). Then

D'(adz") = D'(a) A dz' 4 (=1)°aD'(dz") = da A dz! + aD’(dz’)
= D(adz’) + aD’(dz")
since
D'(dz') = D'(D(x;, dz"M"})) = D'(D' (z;, dz"\M1})) = 0
therefore D = D’ by induction. O
Lemma 3.28. Suppose M a manifold, p € M, and D an exterior derivative on M. If there exists an

open set U of M with p € U such that w|y = 0, then there exists an open neighbourhood U’ of p such that
D(w)|yr = 0.

Proof. W.l.o.g. assume U is part of a chart (¢,U). Take A : M — [0,1] a C°°-map such that A = 0 on U’
and A =1 on M\U. (Just take U’ small enough so U’ C U, and take a bump function b such that b= 1 on
U’ and b =0 on M\U, then A =1 —1). Then

D(”LU)|U/ = D()\U))|U/ =dA N w|U, +AA D(w)|U/
since w|y: = 0 and Ay» = 0, D(w)|yr = 0. 0

Lemma 3.29. Suppose (¢,U) a chart of M. Then an exterior derivative D on M wuniquely induces an
exterior derivative Dy on U.

Proof. Then define Dy : Q*(U) — Q*(U) as follows: for w € Q*(U), Dy(w)(p) = D(Aw)(p), where A =1
around p and A = 0 on M\V such that p € V. C V C U. This is well-defined by lemma Dy is a exterior
derivative on Q*(U), since:

(1) Doy o Dy (w)(p) = Dur(ADw(w))(p) = DAD(w))(p) = DD(w))(p) = 0;

(2) Take w € Q°(U), then Dy (w)(p) = D(Aw)(p) = d(Mw)(p) = du (w)(p):
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(3) Suppose two bump functions A1, Ay around p, then A = A; A is still a bump function around p. Then

Dy (anb)(p) = D(AaAb)(p) = D((Ara) A (A20))(p)
= (D(A\1a) A A+ (=1)98 %\ 10 A D(\2b))(p)
= (Du(a) Ab+ (=1)%%“a A Dy (b))(p)

Therefore a exterior derivative D on M. Since U is diffeomorphic to ¢(U), the following diagram commutes:

Q*(U) —22— (V)
Q*(p(U Doy Q*(p(U))

since Dy (py is unique by lemma @ Dy is also unique.

Definition 3.30. Let M be a manifold. The complex

4(—1 4
—_—

O M) —— o () A

0 Q0(M)

— Q™M) —— 0

is called the de Rham complez of M, where d¥ = D|qi(rp). Also define Z(M) = ker(d¥)) the set of cocycles
or closed forms, and B*(M) = imd(~Y the set of coboundaries or exact forms. H'p(M) = Z'(M)/B*(M)

is called the i-th de Rham cohomology of M.

Example 3.31. Let M be a manifold with connected components M; for ¢+ € I, I is countable.

HY5 (M) = Rl because a function f € C>°(M,R) with df = 0 is constant on every M;.
Example 3.32. Consider the de Rham cohomology of S':
0 —— 081 4 Qs — 0

Since S! is connected, HI5(S') = R. Consider ® : Q'(S') = Z'(S') — R, with

27
Bw) = [ (e ()

(=)

where
(0= (1) () = el cl0) + (0 - cl0)
also, im (d(®)) C ker ® since

2m , 2m b
| doena = [Cagoon (o) a
— (foc)2m) — (o)D) =0

27
/ (f o) (t)dt
0

and @ is surjective since
27
O (—ydx + xdy|rs1) = / —ca (t)dxc(t)(c’(t)) + c1(t)dye (¢ (t))dt
0

- /O " —co(t)ch (1) + c1(t)cy(t)dt = 27

Then
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Now show ker® C im (d®): let w € ker®, put f(c(t)) = fg wes)(c'(s))ds, f is well-defined because
w € ker ®. Then

(@0 (0) = Wy 0T ( 50) = (s o) (500)

~earo-( t o (9 ) = (0

since ¢(t) is non-zero everywhere on S*, and T,)S! is of dimension 1, df = w. Thus ker ® = im (d©),
Therefore
R=ZY(SY)/ker® = Z(SY)/B*(S") = Hip(SY)
now all the cohomology group of St is known.
Example 3.33 (Poincaré lemma). Suppose n € N°, then

HCIICR(R”) = {0 k >_1

Proof. Since R™ is connected, H)5(R™) 2 R. For k > 1, take w = adx;, A --- A dx;, such that dw =0, i.e.
Oa

Z %dxj/\dxil/M-J\dxik:O
j@fin,in}
. ) ) da )
thus for all j & {i1,---ix}, . 0, thus a only relies on x;,,- - ,z;,. Define
J
zil
f(‘riu"'vxik):/ a’(xiu"'vxik)ds
0
then d(fdwi, A--- Ndwxi,) = a(Tiy, -, 24, )dTiy Ao ATy, . O

Remark 3.34. There are usually four tools for computing the de Rham cohomology:
(a) the Poincaré lemma;

(b) integration on manifolds;
(¢) Mayer-Vietoris sequence;
(d) homotopy invariance.
Lemma 3.35. Let f € C°°(M, N). Then the exterior derivatives dys and dy satisfy dpys f* = f*dy, i.e. the
diagram
0 —— QO(M) —205 V(M) 205 Q2(M) —— -
f* f*T J”T
0 —— QON) -2 QI(N) -2 Q2(N) —— -
commautes.

Proof. For all w € Q*(N), take any f(p) € N, it can be written as linear combinations of adzy A - -+ A dx
locally around f(p) (by taking charts). W.l.o.g assume w = adzy A - - - A dzg, then the form w’ = ad(Az1) A
-+ Ad(Axg) agrees with w locally around f(p). Therefore f*w = f*w’ around p by the local property of f.
Since f* is an R-algebra homomorphism, one only needs to look at the differential forms in Q°(N) U BY(N).
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0
Suppose g € Q°(N),pe M,v=>", Vig € T,(M), then

1 (dn9)p(v) = (dng)(Ty fv) = (Z ) ZW@?

= d(g ° f)p(v) = dM(f*(g))p(v)
therefore f*dng = dp f*g. For the case where dyg € B'(N), p € M, v € T,(M),
fr(dndng) = f7(0) =0, duf*(dng) =dmdrf*(g) =0
where the second equality used the result for g € Q°(NV). a
Remark 3.36. Suppose f € C>°(M, N), then f* induces a map HXo(N) — H5p(M) for k=0,1,2,---.
Proof. By lemma m for k > 0, one has f*(im d%)) C im dg\?. Suppose w such that dg\i,ﬂ)w = 0, then
dg\ifl)(f*w) = 0, therefore f*(ker dg\l,+1)) C ker d%[“). O

Lemma 3.37. Let M be a manifold. Consider the two maps f; : M — M x [0,1] for i = 0,1 with f;(p) =
(p,i). Then there exists a linear map L : Q*(M x [0,1]) — Q*(M) such that f{ — f§ = dyro L+ Lodyxo),
i.e. the following non-commutative diagram:

e QF (M x [0,1]) —— QF(M x [0,1]) —— Q1M x [0,1]) —— ---
/
L) (E+1)
. Qkfl(M) Qk(M) , Q]”l(M) N
Proof. Suppose N = M x [0,1]. Then there are maps: 7 : N = M, (p,s) — p, ma : N = [0,1], (p, s) — s,
and ¢ : M — N,p — (p,1). Since m ot = idp, 7 : Q*(M) — Q*(N) is injective. Also, one has an

isomorphism @, ) = T(p.5T1 © Tp,syT2 @ T(po)N — T, M @ T4[0,1]. Take v € T, M, define vector fields
X, :[0,1] = TN via X,(s) = &'  (v,0) and

.0
9, (0
g =, (0.5:)

Then define L. For w € Q¥(N), if k = 0, then L(w) = 0. Otherwise put

L@ ) = [0 (051 X)X (9 s

By the definition of L, it is obvious that it has the local property, i.e. if there exists U C M an open subset
and wi,wp € Q*(N) such that wi|yxo,1] = waluxjo,1), then L(wi)|y = L(wz)|y. Then by the additivity
of L, one only needs to consider the case where w = adz! and w = adt A dz! with a € C=(U x [0,1],R)
compact supported (otherwise just multiply a bump function).

(a) Suppose w = a € CX(U x [0,1],R), then

(fi(a) = fo(a))(p) = (a0 f1)(p) = (a© fo)(p) = alp,1) — alp,0)
(dM o L)(a) = dM(L(a)) =dpy0=0
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i a a ! a
(Lody)(a) =1 (_ i+ gtdt) )= [ Gilrs)ds = ap.1) a0

this verifies case (a).
(b) Suppose w = adx! where a € C*®(U x [0,1],R) and 1 < |I| = k < m. In this case, since
(dxj)(p#)(%(p, 5)) =0, L(adxz’) = 0. therefore

)
Lody(adz’) =L (;tldt A dmI)
Then take vy, --- ,v-1 € T, M,

1
L (g;ldt/\dxl) (7-)17"' avk‘—l) - / %(py 3)(dx1)(p7s)(Xv1<5)a"’ 7Xvk71 (S))ds
» 0

= (/0 %(p, s)ds) (dxl)p(vl, C L Ug—1)
a)(p) — f5(a)(p)(da’)p(vr, -+ s vp1)
adz’) — f5(adz’))p(ve,- -+ vp)

this concludes case (b).
(¢) Suppose w = adt A dx!, a € C*(U x [0,1],R), since f(dt) =0,
)

fi(w) = f5(w) = fi(adt) A i (da’) = fi (adt) A f5(dz') = 0

one also has

(das 0 L)), (01, ,0p—1) = dnt ((/01 a(o,s)ds> (dmf))
=dy (/01 a(e, s)ds)p A (dx!), + /01 a(p, s)ds (dM(de))p

— (/01 oo, s)ds)p A (dz"),

(Lody)(w), = L(da A dt Adz"),

m aa i 8(1
- Z?dxj/\dt/\dxf =—L Zidt/\dxj/\dxl
i1 9% i=1 9%i

p 3 p

m 1
=— (Z/o %(p,s)ds . dxj> A dxt
i=1 J

1
= —dy </ ale, s)ds> A da!
0 P

this concludes case (c), the proof is done. O

and

Theorem 3.38. Suppose f,g € C>°(M,N) are smoothly homotopic, i.e. there exists H € C*°(M x[0,1], N)
such that H(e,0) = f(e) and H(e,1) = g(e), then f* = g* on HX,(N) for k=0,1,2,---.
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Proof. Take maps f; : M x [0,1] — M and L from lemmam Then H o fo = f, H o f{ = g. Therefore
g —=f=f—fo)oH =dyoLoH"+ LodyxjpyoH =dyoLoH"+LoH"ody

suppose w € Z¥(N), then (¢* — f*)(w) = dp o L o H*(w) € B¥(M), hence the difference is zero on the
cohomology groups. O

Theorem 3.39. Suppose M and N are homotopic manifolds without boundary, i.e. there exists f €
C>®(M,N) and g € C>°(N, M) such that f og and go f are smoothly homotopic to idy, idy respectively,
then HYo(N) =2 HEo (M) for k=0,1,2,---

Proof. By theorem g o fr=(fog) = (idu)" =idyr (), and f* o g" = (idy)" = idyr () on all
the respective cohomology groups. Therefore f* is the isomorphism required. |

Example 3.40. Suppose n € N*. Then S™ and R"™1\{0} are homotopic via the following maps:
S —— R\ {0} ——— S»

where ¢ is the inclusion map and 7 is given by = — W Then wor = idgn, and o7 is homotopic to idgn+1\ {0}
T2
T

via H : (R"*1\{0}) x [0,1] — R"*\{0}, H(x,t) = to+ (1 —1) 2
and H(z,0) = v ow(z). Therefore Hf,(S™) = HX (R"1\{0}) for all k.

Definition 3.41. Let M be a manifold. Denote Hjp(M) = @ioy Hipr(M), then it is an R-algebra with
respect to the following product:

—i Hyp(M) x Hip(M) — Hip(M),  [unr] — [we] = [wi A ws]

, it is obvious that H(z,1) = idgnt1\ {0} ()

this map is called the cup product.
Proposition 3.42. The cup product for M is well-defined.

Proof. Take [w1] € HYp(M), [wa] € HYn(M) and p € QF71(M), then [wy + dp] = [w;]. To verify it is
well-defined, one has to show [(w1 + dp) A wa] = [w1 A ws), i.e. dp A wa is exact. Since

d(p Awy) = dp ANwy + (=1)*1p A dwy = dp A wsy
the proof is done. O
Example 3.43. H;.(S') 2 R & R as real vector spaces, and (H;p(S'), —) = R[z]/ (z?) as R-algebras.

Theorem 3.44. Let M be a manifold, and U,V be open subsets of M such that M = U UV. Denote the
inclusion maps vy p 2 U — M, wypr 2V — M and similarly wynv,u, tunv,v. Then:
(a) the sequence of R-vector spaces

0—— QUUV) —25 Q) e (V) 25 Q*UnV) —— 0

is exact, where o = Lt L*{/,M and 8 = L*UOV,U — vy
(b) there is the following long exact sequence (Mayer-Vietoris sequence)

0 —— H(UUV) —2 HI(U) & HI(V) —2— HI(UNV)

< .

Hip(UUV) —2 HL(U) & Hi (V) —25 HL(UNV) —— -

4
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Proof. (a) « is injective since w € Q¥(U U V) is determined by w|y and w|y. Since 3o a(w) = w|yny —
wlyny = 0, ima C ker 8. Take wy € Q*(U) and wy € Q*(V) such that B(wy,wy) = 0. Then wi|pny =

wa|unv, therefore just take
wy, x€U
w =
we, x €V

then o(w) = (w1, ws), ker § C im ¢, therefore ker 8 = im a.
Now show f3 is surjective. Take p € QF(U NV) and a partition of unity Ays, Ay subordinate to the cover
{U,V}. Then B(Avp, —Avp) = (Avp)luav + (Avp)uav = p.

(b) Denote dgc) @di,k) = dgk), dg%v = d(()k) and dgcr)w = d(Qk). First, claim that (%) and %) induces maps

on the corresponding cohomology groups. Suppose w € ker dék), then dgk) o a®(w) = aF+D) o dék) =0,
therefore oM w € ker dgk). Suppose d(()k)w € im d(()k), then o) od(()k) (w) = dgk) o (w) € im dgk)7 verifying
the claim. Then obviously agk), %k) and aék), ﬁék) induce the same map on the cohomology groups, and
ker %) = im a(®).

0 0 0
‘L ol l (k) l
0 —— ker dg%v —_ ker(dgjk) ® di/k)) ——— ker dgc%v

Next, construct the map 0. Take w € ker d(Qk), since 3 is surjective, there exists (wy,wy) € QF(U) @

QF(V) such that B(wy,wy) = w. Then dgk)(wy,wv) € ker BT = ima®) | since a*) is injective, there

exists p € Q¥ (U U V) such that o*1(p) = dgk) (wy,wy). Define §([w]) = [p]. Since oz(k'*‘Q)d(()kH)p =

dFHD k1) ) = 0, p € ker d% Y Claim that it is well-defined on the cohomology groups. First, suppose
1 P p 0

there are two preimage of w, say w; and w. Then w; —ws € ker 5% = im a(®) | and dgk)((a(k))_l(wl —wy)) =
(a(kﬂ))’l(dgk)(wl — wg)), hence the choice of preimage does not matter. Second, suppose w; — we =
dékil) o =1 (5), then wy — ws = K)o dék)(w). Take dék)('y) as the preimage, then obviously it does not
affect the image of 4.

Now verify ker § = im %), Suppose w € im %), then there exists v € ker dgk) such that 3~y = w. Just
take v as the preimage, then d(w) = 0, w € kerd. Suppose w € ker d, suppose its image p, then there exists

v such that p = dgk)w. So alk+1)p = dgk) o a®)(v), therefore the preimage of w under 3 is a(¥) () 4 s for
some s € kerd{"). Then w = B®) (a®)(v) + s) = BF)(s) € im B*),
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Finally, check ker a(**1) = im §. Suppose [w] € ker a**1) | then there exists v such that a*+Dw = dgk)w.
Then & o 3% () = w. Suppose [w] € im §, then obviously [a*+1) (w)] = 0. O

Example 3.45. (a) Let M, N be manifolds with N being homotopic to a point. Then M x N is homotopic
to M: since N is homotopic to a point, M x N is homotopic to M x {0}. Then M x {0} is diffeomorphic
to M via f: M — M x {0}, m — (m,0).

(b) Compute the de Rham cohomology for spheres S™. When n = 1, by previous examples HJ5(S1) & R,
H},(S') 2 R. For n =2, take S? = U UV where U = {(z,y,2) € S? | 2 > —1/2} and V = {(z,y,2) € S? |
z < 1/2}. Notice that U and V are homotopic to points. Then there is the Mayer-Vietoris sequence

(0) ﬂ(O)
0 —— HgR(SQ) —— Hr(i)R(pt) @HgR(pt) — H{?R(Sl)

K—(;(U)
,3(1)
Hinl” " /H/R(S)

e
ir(S?) —— Hp(pt) ® Hip(pt) —

K— s
H?,(5?

ar(5?) ———— 0

Since ker 89 = im o(? is one dimensional, im 8(9) is also one-dimensional and therefore surjective. Hence
60 =0, oV is injective, thus H}.(S?) = 0. Since 8 = 0, §) is bijective. Thus H2,(S?) = R. For S",
since S™ is connected, Hlp(S™) = R. Take U = S™\{(1,0,---,0)} and V = S"\{(-1,0,---,0)}. U and
V are homotopic to a point, and U NV is diffeomorphic to S"~! x R. Then there is the following exact
sequence for k > 1:

C— 0 —— Hip(S" ) —— HYP(SY) —— 0 —— -

therefore H¥,(S"~1) = HYFL(S™). For k =0,

0— RS ReR IRy HL(S") — 50— -
obviously im f = R = kerg, therefore g is surjective, thus h = 0. Since h is surjective, Hip(S™) = 0.
Therefore
R, k=0,n
HEp(S™) =47 ’
ar(S") {0, otherwise

(c) Since Mobius strip is homotopic to S, its homology groups are the same as S?.

(d) Compute the de Rham cohomology of M = S* x S'. Take U and V to be the upper and lower part
of the torus, then U and V are both homotopic to S*, and U NV is homotopic to S* LU S*. Therefore there
is the sequence

0
0 » HYp(M) —— H3,(UUYV) S H)r(UNV)

—
50
i (M) @{;R(U uvy 2w
; —
Y E
suppose the inclusion maps 1y : UNV — U and vy : U NV — V. Then since the restriction of constant
functions on U gives the same constant on both components of U NV and similarly for V', for constant
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functions (a,b) € H5(S') & HI,(S1), 8%(a,b) = 1}b— 1j;a = (b — a,b — a). Denote the two components of
UNV to be A and B respectively. Obviously A and B both are retracts of U and V. Take an embedding of
S* on A such that df induces a generator on Hj,(A), then it also induces a generator on H},(U). Therefore
in the following diagram the map from H],(U) to Hj,(A) and Hj,(B) is just the identity. Therefore 3°
maps (bd6, adf) to ((b — a)df, (b — a)dl), the image is one dimensional.

Hap(U) Hgp(A)

l I

1
Hi(UuV) 2 HL(UNV)

[ l

Hgp(V) Hig(B)

Therefore H2p(M) = Hip(UNV)/kerd' = Hjx(UNV)/imB* ¥ R, Hip(M) = kera! @ ima! = im§° @
ker B! = (H),(UNV)/impB°) ® R 2 R ¢ R, and since M is connected, H)5(M) = R.

(e) Compute the de Rham cohomology of M = K, the Klein bottle. Divide it into two cylinders U, V,
then their intersection U NV is also a cylinder. Write the Mayer-Vietoris sequence

0
0 » HYp(M) —— HY,(UUYV) AN H)r(UNV)

/ " /
1

Hlp(M) 5 Hip(UUV) = Hip(UNV)

/ ) -

H?, (M) —— 0

Obviously im 3° = R. To determine 3!, again one looks at the generator given by df from S' on UNV. Since
U and V are opposite cylinders, the mapping is just df — (df — (—df)) = 2d0, therefore im 3! = R. Hence
H2,(M) = Hix(UNV)/keré* = Hi,(UNV)/imB' 20, Hjz(M) = kera! @ ima! = im§° & ker g! =
04 R = R. Since the Klein bottle is connected, Hl5(M) = R.

(f) Compute the de Rham cohomology of M = RP". First introduce a map A : S™ — S™,z — —x.
For [w] € H}R(S"), [g.w is an isomorphism to R (since by Stokes’ theorem exact forms will be sent to
zero). Define w by wy(vy, -+ ,vp—1) = det(p,v1, -+ ,vp—1). Then w is a generator. Since A sends w to
(—=1)"*lw, A* is just a multiplication map by (—1)"*!. Since (A*)? = id, the complexes of S, QF(S"),
can be decomposed into the direct sum of eigen spaces of A*, i.e. QF(S™) = QF(S™), @ QF(S™)_ via
v = (1/2)(v + Pv) + (1/2)(v — Pv). Since d respects the decomposition, one can define HY,(S™); and
Hko(S™)_. Obviously H7p(S™) = H7(S™)+ when n is odd, and H7p(S™) = H7,(S™)- when n is even.
Suppose the projection map 7 : S® — RP", since 1A = m, m* = A*r*. Thus 7* : QF(RP") — QF(S™),.
Claim that 7* is an isomorphism. If the claim is true, then

ny n R, if k=0 and k =n when n is odd
Hip(RP") 2 Hip(S")4 = .
0, otherwise

Now verify the claim. Suppose a € Q%(S™) and w € QF(RP") such that 7*w = a, then

(W*w)p(vl, . ) = wﬂ_(p)((’]'('*)p'vl’ ce ) = ap(’U1, . )
but for every 7(p) and (m.),v1, there are only two choices, one is p, v and the other is A(p), A.(v1). Hence
w is uniquely determined iff a, (v, ) = aa@p)(Asve, ) = A%ap(vy, -+ ), ie. a € QF(S™) .
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Theorem 3.46. Suppose n > 0 an even integer. Then there is no nowhere vanishing smooth vector field on
S™.
Proof. Suppose there is such vector field, denoted by x — v,. Then

H(z,t): 8" x [0,1] = S™, (x,t) — zcos(rt) + li’i' sin(rt)
Vg

is a smooth homotopy between id and A :  — (—z). But A is of degree —1, contradiction. O
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4. INTEGRATION

Definition 4.1. Let V be a finite dimensional real vector space. Two (ordered) basis v = {v1, - ,v,}
and w = {ws, -+ ,w,} have the same orientation if the base change matrix from V to W has positive
determinant. This is an equivalent relation on the set of ordered basis, denote their quotient with or(V).

Example 4.2. (a) V = Ro, then or(V') = {[v], [-v]}.
(b) V =Ruv; ® Rusg, then or(V) = {[v1, va], [ve, v1]}.

Definition 4.3. A map O : M — ||, or(1,M) is called an orientation on M if Vp € M, 3(p,U) around
p such that Vq € U, there is

7] 0
O = RN ey —
(9) K 9 D g (@)]

Denote or(M) the set of orientations on M. M is called orientable if or(M) # @.
Proposition 4.4. If M is connected, then the number of orientations on M can only be zero or 2.

Proof. Suppose O, 0" two orientations on M, put U= ={p e M | O(p) = O'(p)} and U, = {p € M | O(p) #
O'(p)}. By definition they are open sets and M = U— U Ux. Therefore M = U— or M = U,. Take a
point py € M, then the map or(M) — or(Tp, M), O — Oy, is injective, therefore |or(M)| < 2.

Now assume |or(M)| = 1, take the only orientation O. For O, suppose for every point p, the chart around

pis o = (z1, - ,z,). Now take ¢’ = (z3,21, -+ ,2,) and define O’ via
0 0
H —_— — e
o () 0 (5 ) @]
then obviously O’ is another orientation of M, contradiction. O

Proposition 4.5. Let M™ be a manifold. Then the following statements are equivalent:
(a) M is orientable;
(b) M has an atlas where for all the transition maps, their jocabian have positive determinant;
(c) There ezists w € Q™ (M) such that for allp € M, w, # 0.

Proof. Suppose M is orientable, then just take the atlas using local charts (p,U) in definition Suppose
a point p in the intersection of two such charts U NV, then [8%1(]9), I %(p)] and [a%l(p), e ,%(p)]
must be in the same equivalence class, therefore their base change map (which is the jocabian) must has
positive determinant. Conversely suppose there is already such an atlas. Then just take an orientation via
P [a%l(p), RN %(p)}, it is obviously an orientation and well-defined on the intersections. Hence (a) and

(b) are equivalent.
(b)=(c). Suppose such an atlas denoted by (p;,U;). Take a partition of unity A; subordinate to this
atlas. Suppose ¢; = (z}, -+ ,2), put w = > ; Nidx} A -+ Adzl. For all p € M, suppose local chart ¢,
. ,%], since the determinants are all positive, dz! A -+ A dz?(v,) > 0.

and a tangent vector v, = |

Therefore w,, # 0.

(c)=>(a). Take w € Q™(M) nowhere vanishing. Define O : M — [ | ), or(T,M) via O(p) = {[v] |
Vi, Um € TpM,w(vy, -+ ,vm) > 0}. Now verify O is indeed an orientation. Take p € M and a chart
(p,U) around p (U is connected), then w|y = adzy A - -+ Adz, with a € C°(U,R) nowhere vanishing. Then
a(U) C (0,00) or a(U) C (—00,0). For the first case, O(q) = [a%l(q), e ,%(q)] for all ¢ € U, therefore

(p,U) satisfies definition For the second case, just take chart (¢’ = (—x1, -+ ,2m),U). O

T,
Ba:].

Proposition 4.6. Let M™ (m > 2) be a manifold and OM # @. Suppose or(M) # &, then or(OM) # &.
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Proof. Take O € or(M), for p € OM and a chart (¢ = (z1, -+ ,Zm),U) preserving O and maps U to the
lower half space, U N OM to an open subset of z; = 0. Since ((z2, - ,2m),U) is a chart for OM, take
90(p) = (5% (p), , 52-(p)], then 9O € or(9M). =

Example 4.7. (a) R™ is orientable because w = dx; A -+ A dx,, is nowhere vanishing for all p € R™ since
wp(5 (p).- 5= () = 1. _

(b) S™ is orientable, because S™ is a boundary of an orientable manifold S™ = 9B, (0)®).

(¢) The Mobius strip is not orientable.

Proof. Assume the Mobius strip, denoted by M, is orientable. Then there exists w € Q?(M) such that w is
nowhere vanishing. Now take E1(0), E2(0) : R — T'M from example then (E1(0), E2(0)) is an ordered
basis of T},(o,9) for all § € R. Put f(0) = wpo,0)(E1(0), E2(F)), then f: R — R is nowhere vanishing. But
f(0) = —f(2w), contradiction. O

Remark 4.8. One also need the notion of orientability of a zero dimensional manifold. For a zero dimensional
manifold M, which is just a countable set of points, an orientation on M is a map O : M — {£1}.
Then proposition [4.6] still holds: for a one dimensional manifold M and p € M, take a chart such that
o(p) = [%(p)]. Take 90(p) € {£1} such that 80(]9)8% is pointing outwards.

Definition 4.9. Suppose M™ a manifold and O an orientation on M. Denote C.(M,R) and QF(M) to
be the collection of continuous functions from M — N and the differential forms on M with compact
support respectively. An atlas (¢;, U;) is called to have orientation O if every chart (¢;, U;) has orientation
Oly,, i.e. Vp € U;, O(p) = [%(q),-~- ,é)y%(q)]. For such chart (¢,V), define I, vy : Q7(V) — R via
LI vyladys A -+ - dyn) = fcp(V) adyy - dyn. If m > 1, define I(57,0) : Q7' (M) — R as follows: let (Us, v;)ier
be a locally finite atlas with orientation O and (););es be a partition of unity subordinate to (U;);er. Then
Iroy(w) = 3 icr Lig,un)(Aw). If m = 0, then Ip0(a) = ZPGM O(p)a(p) for a € Ce(M,R). Ip,0)(w) is
called the integration of w over M and is denoted by f( M,0) W-

Remark 4.10. supp \; Nsuppw # & only for finitely many i € I, say i € I (this is because (supp A;)s is
locally finite, and supp w is compact). Therefore the summation is finite.

Proposition 4.11. The integration I 0y is well-defined, i.e. it does not rely on the choice of oriented
atlas and partition of unity.

Proof. First suppose two charts (¢, U), (1, V) with two coordinates ¢ = (z1,- - ,zy) and ¥ = (y1,- -+, Ym)
with the same orientation, i.e. det(D(¢)op~1)) > 0. Then on U NV, there are two charts ¢ and v. Suppose
w=adry A ANdxy, =bdy; A ANdym, put D = D(po 1), then dy; A --- Ady,, = det(D)dxy A ---dz,,.
Therefore

adxy A -+ Ndxy, = bdet(D)dxy A -+ Adxy,
therefore bdet(D) = a. In calculus it is shown that

/ adx1~--dxm:/ a
L(UNV) Pp(UNV)

since they have the same orientation,

o R .
det ((M) ’ dys - dyn,

det <M> >0
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therefore

/ adxl...dzm :/ adet <6(’Ih”.7x7n)> dyl...dym
e(UNV) Y(UNV) oW1, Ym)

= / a(det(D))"dy; - - - dym
p(UNV)

= / bdy1 R dym
P(UNV)

Also, on U NV, there is [, (a+b) = [, a+ [;~ b by definition. Now suppose two atlases (¢q,Uq)
and (¢, Ug) with partition of unity A, and pg. Suppose a form w € QF(M), then

AW = / Aa = / Aa
za:/(‘PmUa) b g (¢asUa) (zﬁ: ’Oﬁ)w 2&:; (¢aUa) P
since supp (Aapg) C Us N V3,
)\a - Aoz
Za:zg:/( aUa) po za:zg:/( a:UaNV3) pot
= A
Zﬁ: za: /(W’Vﬁ) oot
B ; ‘/(wB’VB) roe
the proof is done. O

Example 4.12. (a) Suppose M = Z C R, dim M = 0. Take an orientation O : M — {£1},z — (—1)~.
Then for f € C.(M,R), f is only nonzero on finitely many points (since it is compactly supported). Then

/(Mp)f = 3 (1))

zeM

(b) M = [a,b] C R, take two charts (id = s,U = [a,¢)) and (id = ¢,U = (b,d]) where a < b < ¢ < d.
Suppose w = (adz)|r where adr € QL(R). Take a partition of unity Ay, Ady. Then

/ wdz = [ ao)aE)ds+ [ v @at)dt
M la,c)

(b7d]
b
= / a(x)dx
a

if a = df, then by the fundamental theorem of calculus,

[ ade=0)-s@ = [ 1
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(c) M = S?, take the natural orientation induced by being the boundary. Then

/ zdsc/\dyz/ zdz/\dy—F/ zdx N\ dy
S2 S2n{z>0} S2n{z<0}

- / 2y (@, y)de Ady + (1) / o (a,y)de A dy
B1(0)(2®)

B1(0)®
4m
=2 V1—2? —yldedy = —
B1(0)® 3

Take N = B1(0)3), with the orientation induced by R3. Then

4
/d:z:/\dy/\dz:/dxdydz:—ﬂ:/ zdx N\ dy
N N 3 ON

Theorem 4.13 (Stokes’ theorem). Let M™(m > 1) be an oriented manifold and w € Q™=*(M). Then

/ dw:/ w|3]u
M oM

Proof. Suppose w € Qm~1(M). Let (Ai)1 be a partition of unity subordinate to an locally finite atlas (¢;, U;)

with the same orientation such that U; is compact for all i. Then \;w € QT~Y(U;), oU; = U; N OM and
supp A; Nsuppw # @ only for finitely many i € I, say i € Iy. Suppose the stokes’ theorem is true for each

U,;,then
dwz/ d A w
fute=1, (Z )

i€ly

=Y [ dw) = / d(\w)

ieIo/M ielo * Ui

= )\Zw ;= / /\iw i
Z/QU< Vo =3 [ ol

ZZ/ (Aiw)|onr  (supp (Miwlanr) C OU;)
i€l oM

= dw|aM
oM

Now show stokes’ theorem for a local chart U. Suppose w = adz!, where |I| = m — 1. The index that does
not appear in I is denoted by j.
Case (a): suppose U is open, then dw = gZJ dz; A dxt. Since OU = @, Jor w = 0. Also,

/dw:/ / aaidxl...dxm(_l)jﬂ
U —o0 —oo 8.13]‘

since a is compactly supported, the above integral is just zero by the fundamental theorem of calculus. This
concludes case (a).
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Case (b): m > 2, M = U C {z; < 0} (the lower half space). Still, take w = adz! with j the index that

does not appear. Then
co 00 0
0 .
/ dw = / / / TE - dag (1)1
U —o0 —o0 J —0 axj
:/ u.o/ a(O,mQ""7xm)dx2"'dxm

—/ wlou
ou

this concludes case (b). For the case where m = 1, the same arguments works except the orientations are
given by {£1} on the boundary. With all cases concluded, the proof is done. ]

Example 4.14. (a) Fundamental theorem for line integrals, let C' be a smooth curve in R? parametrized
by r(t) = (z(t),y(t), 2(t)) such that r'(t) # 0 for all ¢ € [a,b]. Then for f € C°(R?,R),

L= 1=160)-s0)
c ac
(b) Green’s theorem. Let D be a compact manifold of R? of dimension 2, and P,Q € C*°(R?,R). Then

_ 0Q op
/aDPd“Qdy/D<ax ay>
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5. COMPACTLY SUPPORTED DE RHAM COMPLEX

Definition 5.1. Let M™ be a manifold. The complex

4 d(l) dim)
00— (M) — (M) ——— -+ — Q(M) —— 0

is called the compactly supported de Rham compler. For k > 0, define H¥(M) to be the compactly supported
de Rham cohomology.

Example 5.2. (a) H)(R") =0 for n > 0, and H?(pt) = R;
(b) H!(R) = R. First show that 1m(d( )) = {w € QL(R) | [w = 0}. Suppose dw € imd", then by

Stokes’ theorem [, dw = [, w = 0. For the other direction, suppose w € QL(R) with wa = 0. Since
H},(R) =0, there exists a € C*(R,R) such that w = da. Take [c,d] such that suppw C (c,d). Then

0:/]Rw:/[c7d]w:a(d)—a(c)

take e = a(d), then a(z) = e for all x € R\(¢,d). Take b(x) = a(x) — e, then db = w and b has compact
support. Therefore the map H!(R) — R, w fR w injective, and it is obviously surjective.

(c) HY(R?) = 0. Suppose a € QL(R?) with da = 0. Since H}p(R?) = 0, there exists f € C*°(R? R) such
that df = a. Take a curve C from P to @ with C’ # 0 everywhere and im (¢) N supp o« = &, then

O_/a|c_/df\c—/ floc = F(P) - £(Q)

and the rest of the argument follows from (

(d) H?(R?) =2 R. One only need to show that w € QQ(RQ) with fR2 w = 0 is in im (dgl)). Suppose

= adx A dy with supp (a) C (=R, R)?. Put A(z,y) = f a(t,y)dt, then A = 0 for |y\ > R and
z < —R. Suppose A a bump functlon supported in (0,1) such that [, Adt = 1, put C(¢ fo
and B(y) = A(R,y). Since [; B(y)dy = [p.w = 0, there exists D € Q2(R) such that dD = Bdy. Let
wo = (A — C(z)B(y))dy — AX(z)D(y )dx Since supp AD C (=R, R)? and A(z,y) — C(z)B(y) = 0 for z > R,
suppwg C (—R, R)?. Also,

dwo = adz N dy — A(z)B(y)dx A dy — Mz)B(x)dy A dx = adz A dy

Theorem 5.3. Suppose n,k > 0, then

R, k=n

0, otherwise

HE(R™) g{

Proof. Attempt proof by showing that for n > 2 and k > 1, H*(R") = HE+Y(R"+1) and H}(R") = 0. Firstly,
HY(R™) = 0 follows from the exact same argument in example (¢). Fix a bump function A : R — [0, 1]
with integral 1, and A(z) = [*_ A(z)dz. Put
I s QF(R™) — QPR I (ard2’) = arN(@ng1)de! A de,
then 5
doly(ardz’) = Aans1) 86”
JEI

dx; Adzt A dxny =l od(ald:vI)

also put
o0
Gear : QFFHRYY) 5 QFRY), jepi(de?) =0, jepi(bs(@, zpgr)dz? Ade,gy) = / by(z,s)dsdx’

—00
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then obviously it also has d o jiry1 = jxi2 o d. Therefore they induce maps on the respective cohomology
groups. Since

o0
Jra1 O lk(ajdf,[;]) = (/ )\(l’n+1)dmn+1) ardz’ = arda’
— 00

Jkt1 0l = id g (rn). Now show that lj; o jr4+1 is homotopy equivalent to id. Suppose a homotopy operator

Hipr s QUPH(R™M) = QF (R

o0

Hy1(de') =0, Hypo(by(x, 2py1)de? Ade,iq) = / by(z,s)ds — A(zn_,_l)/ by(x,s)dsdz’

— 00 — 00

Tp41

claim that 1 — I, 0 jrr1 = (—1)*(dHpy1 — Hyy2d). Suppose w = ardx’, then
I o jrs1(ardz’) =0, doHpy1 =0
and

8@1

) ,
Hy o od(arda’) = Hy o Z %dw] Ada! + —
jgr I nt

= Hy42 ((—1)

dxpy1 A dz!

k 804]

da’ A dan) = (—l)kafd:rl
Tn+1

therefore the formula is true for forms of form aydz!. For the other case, suppose w = bydx’ A dz, 41, then

(dHyy1 — Hyyod)(byda’ A dayiq) = (1)1 = Ljpgr) (brdaz? Adzyyq)

therefore the two maps induces isomorphisms on the cohomology groups, which concludes the proof. ]

Remark 5.4. (a) Let M be a manifold that admits one global chart. Then H*(M) = H¥1(M x R) for all
k > 0. This follows from the argument for theorem since M admits one global chart. Now compute
the compactly supported de Rham cohomology for half spaces: H*(R"~! x [0,00)) = 0 for all k. One only
need to consider the case where n = 1. Since [0, o) is not compact and connected, H)([0, c0)) = 0. Suppose
w = adz € QL([0,00)), then w = db, and since w is compactly supported, suppose w = 0 on (R, o00). Then

/ w:/ w = b(R) — b0)
[0,00) [0,R]
therefore w = d(b — b(0)) € imd.

(b) From now on only consider manifolds without boundary.

Definition 5.5. Let M be a manifold and k > 0. A differential k-form w € Q¥(M) is called a bump form
if there exists (¢, U) a chart such that supp (w) is compact and is a subset of U, with w = Adz! for some
bump function A.

Theorem 5.6. Suppose M a n-dimensional connected manifold. Then

R, M is orientable

0, otherwise

HM(M) = {

Proof. Suppose [w] € H*(M), and an atlas (p;,U;) whose charts are just open balls. Take a partition of
unity A; subordinate to this atlas. Since supp w is compact, only for finitely many i, say {1,--- , s}, w; = \w
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is non-zero. Therefore w = )

bump form. By lemma

ier, Niw. Since H'(U;) = R by integration, [w;] = ¢;[u;] where u; is some

[w] = Zci [ui] = cfud]
i=1
therefore dim H?(M) < 1. If M is orientable, by Stokes’ theorem, the integration is a well-defined linear
map to R. Hence dim H(M) = 1.
If M is non-orientable, then by lemma one may take such charts (p1,U1),- -+, (¢n, U,). Take [u;] to
be the bump form on U; with

S~

i

By previous arguments [u1] is a generator of H(M). By the proof of lemma [5.7 one has

1] = fua] =+~ = ] = ~[u]
therefore [uq] = 0, H»(M) = 0. O

Lemma 5.7. Suppose M a n-dimensional connected manifold and wy, ws be two non-zero top bump forms.
Then there exists ¢ € R such that [cwi] = [wa] in H(R).

Proof. Denote BF (M) to be the collection of bump forms on M, and put BF,(M) = {w € BF(M) |
p € intsuppw}. Suppose a,b € BF,(M), and they can be written as a bump form locally on A, B with
A, B =2 R" respectively. Take an open ball U around p such that U C AN B, and the chart on U has the
same orientation with A. Take a bump form on U, say u, with integration 1. Let

a=[a 8=

since H*(R™) = R via integration, [au] = [a] in H?*(A) and [£fu] = [b] in H*(B) where the sign is
determined by the orientation of B respective to A. For convenience replace +3 with 8. Then

au—a=ds, Pu—b=dt (%)

where s € Q7 1(A), t € Q77 1(B). Since s,t can be easily extended to Q7 !(M) by bump functions, (*) is
also true in Q7 (M). Therefore in H*(M), [a] = a[u], [b] = B[u], hence [a] = (a/3)[b].

Put X = {¢ € M | 3w € BF(M), such that [w] = c[u] for some ¢ € R}. X is obviously open, and M\X
is also open, since otherwise one may take r € M\X such that there is a sequence of point r, in X such
that r = lim,_, . r,. Take k large enough such that rp and r can be contained in the a small open ball.
By the argument in the last paragraph it is easy to construct a bump form whose support contains r and
cohomologous to u, hence r € X, contradiction.

Since M is connected, X = M. This closes the proof. O

Lemma 5.8. Suppose M a non-orientable connected manifold. Then for all p € M, there exists a finite
collection of charts (p1,U1), -+, (¢n, Un) with p € Uy = U, such that U;NU;yy # @, det(D(pir109; ")) >0
for1<i<n-—1, and det(D(p1 0 ¢, 1)) <O0.

Proof. Assume on contrary there does not exist such charts. Take p € M, fix a chart U; around p. Then for
all ¢ € M, there is a path ¢ : [0,1] — M with ¢(0) = p and ¢(1) = g. Note that ¢ can always be taken as
injective (if ¢ is not injective at c(a), put to = inf{t € [0,1] | c(t) = c(a)} and ¢; = sup{t € [0,1] | ¢(t) = ¢(a)},
then define a new curve ¢; where ¢;(t) = ¢(t) for t € [0,1]\[to, t1] and ¢1(t) = c(a) for ¢ € [to,t1]). Since ¢
is compact, it can be covered by finitely many small open balls U?,--- , U such that only the neighbouring
open sets have non-empty connected intersections. Adjust the charts on Ul,--- U so that they all admit
the same orientation. Then for every ¢ € M, one has a chart Ul = U.(q). Claim this gives an oriented
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atlas on M, i.e. for all a,b € M with U, (a) N U,,(b) # &, they have the same orientation. If they do not
have the same orientation, then one may shrink U, (a) and U,,(b) so that their intersection is connected

and the jacobian is negative. Then Ucll,~-- U USys e 7Ucl2 will be a collection of charts in the lemma,

contradiction. O

Theorem 5.9 (Poincaré Duality). Let M™ be an oriented manifold without boundary such that M admits
a finite good cover. Then the pairing

/M HE(M) x HISF ) 5 R, ([a], [8) — /Ma/\b

is non-degenerate, i.e. HX(M) = H%_k(M).

Proof. First show the well-definedness of the pairing. Suppose [w1] = [wa] € H¥(M), then wy — wy = da for
a € QF1(M). For p € Q™ *(M) with dp = 0, one has da A p = d(a A p) — (=1)*"taAdp = d(a A p). By
Stokes’ theorem, f a da A p = 0. The same argument goes for the second entry of the pairing.

Suppose finite good cover Uy, --- ,Us for M, denote V}, = Ule U;, attempt proof by induction on k. By
lemma [5.13] it is true for £k = 1. Now assume it is true for Vj_1, then there is the following diagram

S (HE (V) —S (HE(Vie))* @ (HE(Up))* —— (HE(Viee1 N UR))* —2s -+

| f f

s 2 BT (V) — HIS(Viey) @ H S (Uy) —— H (Vi NUR) —2 -
The top row is reversed via 7*(f) = fom. It is clear that the reversed row is still exact. By lemma and
lemma [5.13] one just need to show commutativity. Obviously it can be deduced to two cases:

Case (a): For N C M, consider the diagram

(He(M))" —— (HZ(N))*

| [

Hip *(M) —— Hyp*(N)

for w € H}(N), ¢(w) is just the extension by zero, hence supp¢(w) C N. For p € H}; *(M), (p) = pn.

Then
/ L(w)/\p:/ w A p|N
M N
thus the diagram commute.

Case (b): For M, N two open sets, consider the diagram

(Hi(MON))* —2— (H: (M UN))*

| [

HT=S (MO N) —2 H"=>FL(M U N)
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take p € Hy; *(M), put p = d(p), then plar = dpy, plv = dp2 and p = pi|mnn — p2|mnn. Also, for
we HY(MUN), put @ = 6(w), then (3 )0 = dwy, (137 )+ = dws such that wy — wy = w. Hence

/ w/\ﬁ:/ (wlfwg)/\ﬁ:/ wl/\dplf/wg/\dpg
MUN MUN M N

=(-1)* (/M dwi A p1 — /Ndw2 /\p2>

= (*1)5/ w A (p1|mnn — p2lmnn)
MAN

=1 /MmN o

therefore for each five lemma diagram, let the left two maps be the pairing maps with sign (—1)*, and put
other maps to be the normal pairing maps. Then by previous discussions on case (a) and cases (b), this
diagram commutes. 0

Remark 5.10. Suppose V, W real vector spaces and b : V x W — R a bilinear form. b is said to be non-
degenerate if Yw € W\{0}, Jv € V such that b(v, w) # 0 and Yv € V\{0}, 3w € W such that b(v, w) # 0. If
V, W are finite dimensional, then b is non-degenerate iff f: V — W* v+ b(v, e) is an isomorphism.

Proof. Suppose b is non-degenerate. Take bases of V, W and suppose they are of dimension m, n respectively,
then b(v, w) = vT Bw for some m x n matrix B. Take wy, - ,w,, the standard basis of W, denote By, - , B,
the rows of B, then b(v,e) =0iff vI' By =--- =0T B,,, = Bfv="--- BLv = 0. Since b is non-degenerate, the
only solution for the above equation is v = 0, therefore m > n and B is of rank n. By the same argument
on the other entry one finds m = n and B has full rank. Since B is exactly the matrix representation of the
map f under the basis of V' and the dual basis of W, f is an isomorphism. O

Proposition 5.11. Let M = U UV be a manifold with open subsets U, V. Then:

(a) the inclusion (M : U — M induces maps (1}). + Q:(U) — QX (M) and the same goes for other
inclusions;

(b) the sequence

0 —— QUNV) —2 QU) B (V) —L QU UV) —— 0

is ezact, with a = (WWry)e ® (WGay )« and 8= () — (M);

(c) there exists long exact sequence

0 —— HUNV) —2— HOU) @ H(V) —2— HO(UUV)

=
H\UNV) —° HNU)® H(V) 2= H(UUV) —— ...

c

Proof. (a) is obvious: since w € Q*(U) is compactly supported, it may be extended to a compactly supported
form by zero using partition of unity.

(b) It is clear that a, 8 are chain maps and « is injective. Take a partition of unity Ay, Ay subordinate
to U, V. Then for w € Q5(UUV), w = Apw + Ayw = S(Ayw, —Ayw), hence § is surjective. Now check
ima = ker 8.

It is clear that o« = 0, therefore ima C ker 3. Suppose (w1, w2) € ker 8, then (uf).w1 = (). w2,
hence wi|yny = w1 = wa, denote it by w’. Then suppw’ C supp wy N supp we which is compact in U N V.
Hence a(w') = (w1, ws), ker 8 C im a.
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The argument of (c) is completely the same as theorem (c). O

Lemma 5.12 (Five lemma). Consider the following commutative diagram of abelian groups with exact rows:

el f1 Gy f2 Gy f3 G fa len

| | | | |
a1 @2 as Qg as
N2 N2 + N2 N2

Hl g1 H2 g2 H3 93 H4 9ga H5

if ay is surjective, as is injective, and as, ay are isomorphisms, then as is an isomorphism.

Proof. First show injectivity. Suppose a3z(s3) = 0, then f5(s3) = 0 since a4 is an isomorphism. Hence
s3 € ker f3, then there exists sp such that s3 = fa(s2). Then g3 o as(s2) = 0, aa(s2) € kerga, there
exists hy such that gi1(h1) = as(s2). Since «g is surjective, there exists s; such that ay(s;) = hy. Then
as o f1(s1) = g1 0 a1(s1) = aa(s2), since s is an isomorphism, f1(s1) = so. Then s3 = fa(s2) = 0.

Then show surjectivity. Suppose hg € Hs. Then g4 o g3(hs) = 0. Since a4 is an isomorphism, there
exists s4 such that as(ss) = gs(hs). Then as o fy(s4) = 0. Since as is injective, f4(s4) = 0, there exists
s3 such that f5(s3) = s4. Then g5 o a3(s3) = gs(hs). Therefore h = as(s3) — hs € kergs, there exists
hs such that h = go(hse). Since as is an isomorphism, there exists so such that hy = ag(s2). Then
az(ss + fa(s2)) = az(s3) + h = hs. a

Lemma 5.13. The pairing map is non-degenerate on R™.

Proof. By the first step of theorem [5.9] the pairing map is a well-defined. One only need to consider the
pairing map on H?(R™) x HJ(R") since other maps are just zero maps between zero spaces. Suppose
w € HYR™) with [p, w # 0, then just take p = 1 € HJp(R"), [powAp = [z, w # 0. Now suppose
p = c € HIR(R™) with ¢ # 0, take w = Adz1 A --- Adz, € HP(R™) where X is a bump function with
integration 1, then [;, w A p=c¢ [p, w=c#0. O

Definition 5.14. Let M, N be closed oriented manifolds and f € C*°(M, N). Then f* induces maps between
H}(N) and HJ}),(M). Since they are both homeomorphic to R via integration, f* is just multiplication by
a real number. It is called the degree of f.

Theorem 5.15. Suppose M, N closed oriented manifolds and f a smooth map between them. Let q be
a regular value of f, and let E be the number of elements in f~(q) counted with a sign according to
det(D(1p o fop™1)) (i.e. whether f preserves orientation around that point). Then for all w € Q™(N),

el

Proof. First claim that E is finite. Assume not, then f~!(g) contains infinitely many points. Then one may
pick a sequence p; such that they are pairwise different. Since M is compact, one may take a convergent
subsequence p,, with p = lim,,_, o p,. Since f is continuous, f(p) = lim,— o f(Pn) = ¢. Since M and N are
of the same dimension and ¢ is a regular value, df,, is an isomorphism and therefore f is a diffeomorphism
around p, contradiction.

Since M is compact, f(M) is compact and therefore closed. If f~1(q) = &, then ¢ € N\f(M) and
therefore then f*w, = 0. O

Remark 5.16. (a) Take a bump form wy on N with integration 1. Then E = Ewa = fM ffw = deg f,
therefore deg f = E, which is an integer.
(b) By the definition of degree, one has deg(f o g) = deg f - deg g.
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(c) Diffeomorphisms is always of degree 1, with the sign determined by whether it is orientation pre-
serving.
(d) The definition of degree can be naturally extended to proper maps.

Theorem 5.17 (Sard theorem). Let M™, N™ (m > 0, n > 1) be manifolds and f € C*°(M,N). Then the
set of critical values of f is a set of measure zero in N.

Definition 5.18. Let M™ be a manifold such that all of its cohomology groups are finite dimensional. Then
X(M) = (=1)" dim Hp (M)
k=0
is called the Fuler characteristic of M.



	1. Manifolds and Submanifolds
	2. Approximation
	3. De Rham Complex
	4. Integration
	5. Compactly Supported de Rham Complex

