

Definition. Consider two functors $F, G : \mathcal{A} \rightarrow \mathcal{B}$. A *natural transformation* is a collection of morphisms $(\alpha_A : F(A) \rightarrow G(A))_{A \in \mathcal{A}}$ such that for all morphisms $f : A \rightarrow A'$ in \mathcal{A} , the following diagram commutes:

$$\begin{array}{ccc} F(A) & \xrightarrow{\alpha_A} & G(A) \\ F(f) \downarrow & & \downarrow G(f) \\ F(A') & \xrightarrow{\alpha_{A'}} & G(A') \end{array}$$

Proposition. Let \mathcal{A} and \mathcal{B} both be categories and \mathcal{A} is small. Then the collection of all natural transformations The functors from $\mathcal{A} \rightarrow \mathcal{B}$ and the natural transformations between them constitute a category.

Proof. Since \mathcal{A} is small, $\{\alpha \mid \forall A \in \text{ob}(\mathcal{A}), \alpha \in \text{Hom}(F(A), G(A))\}$ is a set, and the set of all natural transformations is a subset of the power set of this set. Therefore, the set of all natural transformations between two functors constitutes a set. \square

Theorem (Yoneda Lemma). Suppose a functor $F : \mathcal{A} \rightarrow \text{Set}$ where \mathcal{A} is an arbitrary category. Then for all $A \in \text{ob}(\mathcal{A})$, there exists a bijection

$$\theta_{F,A} : \text{Nat}(\text{Hom}(A, -), F) \rightarrow F(A)$$

Proof. For a natural transformation $\alpha : \text{Hom}(A, -) \Rightarrow F$, define $\theta_{F,A}(\alpha) = \alpha_A(\text{id}_A)$. On the other hand, suppose $a \in F(A)$, define $\tau : F(A) \rightarrow \text{Nat}(\text{Hom}(A, -), F)$ by $\tau(a)_B(f) = F(f)(a)$ for $B \in \text{ob}(\mathcal{A})$, $f \in \text{Hom}(A, B)$. To see $\tau(a)$ is indeed a natural transformation, one need to show the following diagram commutes:

$$\begin{array}{ccc} \text{Hom}(A, B) & \xrightarrow{\tau(a)_B} & F(B) \\ \downarrow \text{Hom}(A, g) & & \downarrow F(g) \\ \text{Hom}(A, C) & \xrightarrow{\tau(a)_C} & F(C) \end{array}$$

which reduces to $F(g \circ f) = F(g) \circ F(f)$ and directly follows from the functoriality of F . It is straightforward to check that τ is the inverse of $\theta_{F,A}$. \square

Remark. Suppose a category \mathcal{A} and a morphism $f : A \rightarrow B$ in \mathcal{A} . Then define a natural transformation

$$\text{Hom}(f, -) : \text{Hom}(A, -) \Rightarrow \text{Hom}(B, -)$$

with $\text{Hom}(f, -)_C(g) = g \circ f$ for $C \in \text{ob}(\mathcal{A})$ and $g \in \text{Hom}(B, C)$.

Remark. Consider the functor $N : \mathcal{A} \rightarrow \text{Set}$ defined by $N(A) = \text{Nat}(\text{Hom}(A, -), F)$ and $N(f)(\alpha) = \alpha \circ \text{Hom}(f, -)$, there is a natural transformation $\eta : N \Rightarrow F$ defined by $\eta_A = \theta_{F,A}$.

Remark. When \mathcal{A} is small, consider two functors: (1) $M : \text{Fun}(\mathcal{A}, \text{Set}) \rightarrow \text{Set}$ defined by $M(F) = \text{Nat}(\text{Hom}(\mathcal{A}, -), F)$ and $M(\gamma)(\alpha) = \gamma \circ \alpha$ for $\gamma : F \Rightarrow G$; (2) $E : \text{Fun}(\mathcal{A}, \text{Set}) \rightarrow \text{Set}$ defined by $E(F) = F(A)$ and $E(\gamma) = \gamma_A$. Then $\mu : M \Rightarrow E$ by $\mu_F = \theta_{F,A}$ is a natural transofrmation.

Definition. Given a category \mathcal{C} , a functor $F : \mathcal{C} \rightarrow \text{Set}$ is said to be a *representable functor* if F is naturally isomorphic to $\text{Hom}(C, -)$ for some $C \in \text{ob}(\mathcal{C})$.

Remark. The Yoneda lemma automatically extends to representable functors.

Proposition. Consider the following situation

$$\begin{array}{ccc} \mathcal{A} & \xrightarrow{F} & \mathcal{B} & \xrightarrow{H} & \mathcal{C} \\ \alpha \Downarrow & & & \beta \Downarrow & \\ G & \nearrow & & K & \nearrow \\ & & & & \end{array}$$

define $(\beta * \alpha)_A = \beta_{GA} \circ H(\alpha_A) = K(\alpha_A) \circ \beta_{FA}$, then $\beta * \alpha : H \circ F \Rightarrow K \circ G$ is a natural transformation.

Proof. For the equality appeared in the definition, it is just the following commutative diagram introduced by β .

$$\begin{array}{ccc} HF(A) & \xrightarrow{H(\alpha_A)} & HG(A) \\ \beta_{FA} \downarrow & & \downarrow \beta_{GA} \\ KF(A) & \xrightarrow{K(\alpha_A)} & KG(A) \end{array}$$

and the claim that $\beta * \alpha$ is a natural transformation immediately follows from the following commutative diagram, with the two squares being established by the naturality of α and β .

$$\begin{array}{ccccc} HF(A) & \xrightarrow{H(\alpha_A)} & HG(A) & \xrightarrow{\beta_{GA}} & KG(A) \\ \downarrow HF(f) & & \downarrow HG(f) & & \downarrow KG(F) \\ HF(B) & \xrightarrow{H(\alpha_B)} & HG(B) & \xrightarrow{\beta_{GB}} & KG(B) \end{array}$$

□

Remark. Consider the following situation

$$\begin{array}{ccccc} \mathcal{A} & \xrightarrow{F} & \mathcal{B} & \xrightarrow{G} & \mathcal{C} \\ \alpha \Downarrow & & & \beta \Downarrow & \\ H & \xrightarrow{\gamma} & K & \xrightarrow{\delta} & \\ \gamma \Downarrow & & \delta \Downarrow & & \\ L & \nearrow & M & \nearrow & \end{array}$$

it is easy to check that $(\delta * \gamma) \circ (\beta * \alpha) = (\delta \circ \beta) * (\gamma \circ \alpha)$.

Remark. When seeing those natural transformation graphs, I cannot hold myself from thinking about homotopies!

Definition. Given a category \mathcal{A} , its *opposite category* \mathcal{A}^{op} is obtained by just reversing the morphisms in \mathcal{A} . A functor $\mathcal{A}^{op} \rightarrow \mathcal{B}$ is also called a *contravariant functor* from \mathcal{A} to \mathcal{B} .

Remark. For functors like Hom from \mathcal{A} , their *dual* could be obtained by just taking Hom over \mathcal{A}^{op} . The same goes for natural transformations over Hom.

Example. Consider Rng the category of commutative rings with units and Top . Note that on the spectrum of the ring one may take the zariski topology. Then by taking the spectrum of the ring, it gives rise to a contravariant functor

$$\text{Sp} : \text{Rng} \rightarrow \text{Top}$$

by taking the preimage, since the preimage of a prime ideal is still prime.

I also want to discuss the following questions:

- When we are talking about, say the category of sets, where have we utilized the notion of universes?
- The statement and the proof of the first proposition.